## RESEARCH PROBLEMS

## 1. Richard Bellman: Dynamic programming.

Solve

$$
f(x, y)=\operatorname{Max}\left[\begin{array}{l}
p_{1}\left[r_{1} x+f\left(\left(1-r_{1}\right) x, y\right)\right], \\
q_{1}\left[s_{1} y+f\left(x,\left(1-s_{1}\right) y\right)\right], \\
p_{2}\left[r_{2} x+s_{2} y+f\left(\left(1-r_{2}\right) x,\left(1-s_{2}\right) y\right)\right]
\end{array}\right], \quad x, y \geqq 0,
$$

where $0<p_{1}, p_{2}, q_{1}, r_{1}, r_{2}, s_{1}, s_{2}<1$; see Proc. Nat. Acad. Sci. U.S.A. vol. 39 (1953) pp. 1077-1082; vol. 38 (1952) pp. 716-719. (Received September 23, 1954.)

## 2. Richard Bellman: Probability theory.

Let $\left\{Z_{k}\right\}$ be a sequence of random matrices having a common probability distribution, say $p$, of being $A$ and $(1-p)$ of being $B$, where $A$ and $B$ are two matrices having all positive elements. Let $X_{N}=\prod_{k=1}^{N} Z_{k}$, and $x_{i j}(N)$ be the $i j$ th element in $X_{N}$. Determine the limiting distribution of $\log x_{i j}(N)$, suitably normalized. See Proc. Nat. Acad. Sci. U.S.A. vol. 39 (1953) and Rand Paper 398, to appear in a forthcoming issue of Duke Math. J. (Received September 23, 1954.)

## 3. Richard Bellman: Analysis.

Let $\Pi_{k, l-0}^{\infty}\left(1-x^{k} y^{l} t\right)^{-1}=\sum_{n=0}^{\infty} q_{n}(x, y) t^{n}$. Obtain a formula for $q_{n}(x, y)$. (Received September 23, 1954.)

## 4. Richard Bellman: Number theory.

Let $f(x)$ be an irreducible polynomial with integer coefficients and the property that $f(x)>x$ for $x \geqq a$. Prove that the sequence $\left\{x_{n}\right\}$ defined by the recurrence relation $x_{n+1}=f\left(x_{n}\right), x_{0}=a$, an integer, cannot represent primes for all large $n$. See Bull. Amer. Math. Soc. vol. 53 (1947) pp. 778-779. (Received October 2, 1954.)

## 5. Richard Bellman: Number theory.

Let $x$ be a rational number greater than one, and let [ $y$ ] denote, as customary, the greatest integer contained in $y$. Prove that $\left[x^{n}\right]$ cannot be prime for all large $n$. (Received October 2, 1954.)

## 6. Richard Bellman: Number theory.

Prove that $\sum_{n=1}^{N} d\left(n^{3}+2\right) \sim c N \log N$ as $N \rightarrow \infty$. See Duke Math. J. vol. 17 (1950) pp. 159-168. (Received October 2, 1954.)

## 7. A. D. Wallace: Manifolds with multiplication.

Let $M$ be a compact connected manifold without boundary and provided with a continuous associative multiplication such that $M M=M$. Does the following hold: either (i) $M$ is a group or (ii) $x y=y$ for each $x, y$ or $x y=x$ for each $x, y$ ? It is known that (i) holds if we replace " $M M=M$ " by "there is a two-sided unit"; see Summa Brasil. Math. vol. 3 (1953) pp. 43-55. (Received October 4, 1954.)
8. A. D. Wallace: Fixed points for topological lattices.

A topological lattice is a Hausdorff space $X$ together with two maps (continuous

