EQUIVALENCE RELATIONS IN ALGEBRAIC GEOMETRY

ERNST SNAPPER

1. The cycle groups C_{s}. An algebraic variety V in n-dimensional complex projective space $P^{(n)}$ is obtained by equating to zero a finite number of forms $F_{1}\left(x_{0}, \cdots, x_{n}\right), \cdots, F_{m}\left(x_{0}, \cdots, x_{n}\right)$ with complex coefficients; V is assumed to be nonempty. If V is irreducible, that is, if V is not the union of a finite number of proper subvarieties, it is possible to associate with V in several ways a complex dimension d. For example, just as $P^{(1)}$ is topologically equivalent to a real 2dimensional sphere, so can every $P^{(n)}$ be represented topologically by a $2 n$-dimensional real complex in the sense of combinatorial topology. (See [1]; numbers in brackets refer to the references.) In this representation, V goes over into an even-dimensional, connected, orientable, closed complex whose dimension is defined as $2 d$. This complex is denoted by $K^{(2 d)}$ and V itself by $V^{(d)}$.

Consider the set T_{s} of irreducible, s-dimensional subvarieties of $V^{(d)}$ for some fixed s, where $0 \leqq s \leqq d$. A function on T_{s} is called integral if its value for every element of T_{s} is a rational integer, and if the function is zero except for at most a finite number of elements of T_{s}; these functions constitute of course an additive group, denoted by C_{8}. We identify the integral function which at the elements $W_{1}^{(s)}, \cdots, W_{h}^{(s)}$ of T_{s} assumes the values n_{1}, \cdots, n_{h} and which is zero everywhere else on T_{s} with the linear combination $n_{1} W_{1}^{(s)}+\cdots$ $+n_{h} W_{h}^{(s)}$. Since every $W_{i}^{(s)}$ gives rise to a $2 s$-dimensional, connected, closed, orientable subcomplex of $K^{(2 d)}$, the above linear combination can be interpreted as a $2 s$-dimensional cycle of $K^{(2 d)}$ in the sense of topology. This fact is the reason why we call the elements of C_{s} the s-dimensional cycles of $V^{(d)}$ and often consider C_{s} as a subgroup of the $2 s$-dimensional cycle group of $K^{(2 d)}$. A cycle is called effective if, considered as a function, it never assumes a negative value; otherwise the cycle is called virtual. The effective cycles are clearly closed under addition but not under subtraction, and every cycle is the difference of two effective cycles.

The group C_{s} is completely determined by the cardinal number of T_{s}, and hence its structure is of no interest. The importance of C_{s} lies in the fact that the different aspects of the geometry of $V^{(d)}$ are most conveniently studied by means of the equivalence relations which

[^0]
[^0]: An address delivered before the Palo Alto meeting of the Society on May 2, 1953 by invitation of the Committee to Select Hour Speakers for Far Western Sectional Meetings; received by the editors May 18, 1953.

