A THEOREM ON MONOTONE INTERIOR TRANSFORMATIONS

EDWIN E. MOISE
B. Knaster ${ }^{1}$ has raised the question whether there is a compact metric continuum M, irreducible between two of its points, and a monotone interior transformation T, throwing M into the unit interval, such that for each x of $T(M), T^{-1}(x)$ is an arc. In the present note, we shall answer this question in the negative.

Suppose that such a continuum exists, and let $T(M)=I=[0,1]$. Let K be a subcontinuum of M which contains points of $T^{-1}(x)$ and $T^{-1}(y)$, where $x, y \in I$ and $x \neq y$. Since M is an irreducible continuum, K contains $T^{-1}(z)$ for each z between x and y; and since T is interior, K contains $T^{-1}(x)$ and $T^{-1}(y)$. It follows that each subcontinuum of M either is an arc or contains an open subset of M, but not both. In the first case, K lies in the inverse image of a point of I, and in the second case, K is the inverse image of a subinterval of I. In either case, K is decomposable.

Now let C_{1} be a simple chain of open subsets of M, with links c_{1}, c_{2}, \cdots, c_{k}, covering $T^{-1}(0)$, such that each link of C_{1} contains a point of $T^{-1}(0)$ which does not lie in the closure of the sum of the other links of C_{1}. There is a subcontinuum K_{1} of M, lying in $\sum c_{i}$ and containing $T^{-1}(0)$, such that for each link c of C_{1}, each component of $K_{1}-c \cdot K_{1}$ is a boundary subset of M; each such component is therefore an arc. Let K be $T^{-1}\left(I^{\prime}\right), I^{\prime} \subset I$. For each x of I^{\prime}, \bar{c}_{k} is the sum of two mutually exclusive closed point-sets H and H^{\prime}, containing $\bar{c}_{k} T^{-1}(0)$ and $\bar{c}_{k} T^{-1}(x)$ respectively. In fact, for each $j<k$, the closure of $c_{2}+c_{3}+\cdots+c_{j}$ has a separation into closed sets which induces such a separation of \bar{c}_{k}. But the closure of ${ }^{2} C_{1}^{*}$ obviously has no such separation; whence it follows that there is a component L of $K_{1}-K_{1} \cdot \bar{c}_{k}$ which has a limit-point in H and a limit-point in $H^{\prime} . L$ must contain a point not in the closure of $c_{2}+c_{3}+\cdots+c_{k-1}$; and being a boundary set, L is an arc. L is therefore a subset of the inverse image of a point y of I. Let A_{1} be $T^{-1}(0)$, and let A_{2} be $T^{-1}(y)$.

By repeated application of the above procedure, we obtain a sequence A_{1}, A_{2}, \cdots of arcs lying in M, and a sequence C_{1}, C_{2}, \cdots of simple chains of open subsets of M, such that (1) C_{i} covers A_{i}, (2)

[^0]
[^0]: Presented to the Society, April 17, 1948; received by the editors June 10, 1948.
 ${ }^{1}$ B. Knaster, Un continu irréductible d décomposition continue en tranches, Fund. Math. vol. 25 (1935) p. 577.
 ${ }^{2}$ If C is a collection of sets, then C^{*} denotes the sum of the elements of C.

