A THEOREM ON MONOTONE INTERIOR TRANSFORMATIONS

EDWIN E. MOISE

B. Knaster¹ has raised the question whether there is a compact metric continuum M, irreducible between two of its points, and a monotone interior transformation T, throwing M into the unit interval, such that for each x of T(M), $T^{-1}(x)$ is an arc. In the present note, we shall answer this question in the negative.

Suppose that such a continuum exists, and let T(M) = I = [0, 1]. Let K be a subcontinuum of M which contains points of $T^{-1}(x)$ and $T^{-1}(y)$, where x, $y \in I$ and $x \neq y$. Since M is an irreducible continuum, K contains $T^{-1}(z)$ for each z between x and y; and since T is interior, K contains $T^{-1}(x)$ and $T^{-1}(y)$. It follows that each subcontinuum of M either is an arc or contains an open subset of M, but not both. In the first case, K lies in the inverse image of a point of I, and in the second case, K is the inverse image of a subinterval of I. In either case, K is decomposable.

Now let C_1 be a simple chain of open subsets of M, with links c_1 , c_2, \dots, c_k , covering $T^{-1}(0)$, such that each link of C_1 contains a point of $T^{-1}(0)$ which does not lie in the closure of the sum of the other links of C_1 . There is a subcontinuum K_1 of M, lying in $\sum c_i$ and containing $T^{-1}(0)$, such that for each link c of C_1 , each component of $K_1 - c \cdot K_1$ is a boundary subset of M; each such component is therefore an arc. Let K be $T^{-1}(I')$, $I' \subset I$. For each x of I', \bar{c}_k is the sum of two mutually exclusive closed point-sets H and H', containing $\bar{c}_k T^{-1}(0)$ and $\bar{c}_k T^{-1}(x)$ respectively. In fact, for each j < k, the closure of $c_2 + c_3 + \cdots + c_i$ has a separation into closed sets which induces such a separation of \bar{c}_k . But the closure of C_1^* obviously has no such separation; whence it follows that there is a component L of $K_1 - K_1 \cdot \bar{c}_k$ which has a limit-point in H and a limit-point in H'. L must contain a point not in the closure of $c_2 + c_3 + \cdots + c_{k-1}$; and being a boundary set, L is an arc. L is therefore a subset of the inverse image of a point y of *I*. Let A_1 be $T^{-1}(0)$, and let A_2 be $T^{-1}(y)$.

By repeated application of the above procedure, we obtain a sequence A_1, A_2, \cdots of arcs lying in M, and a sequence C_1, C_2, \cdots of simple chains of open subsets of M, such that (1) C_i covers A_i , (2)

Presented to the Society, April 17, 1948; received by the editors June 10, 1948.

¹ B. Knaster, Un continu irréductible à décomposition continue en tranches, Fund. Math. vol. 25 (1935) p. 577.

² If C is a collection of sets, then C^* denotes the sum of the elements of C.