A BOUND FOR THE MEAN VALUE OF A FUNCTION

J. ERNEST WILKINS, JR.

Let $f(t)$ be a bounded measurable function defined when $0 \leqq t \leqq \pi$. The Fourier sine series associated with $f(t)$ is

$$
\sum_{n=1}^{\infty} b_{n} \sin n t, \quad b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \sin n t d t
$$

We shall be interested in this paper in establishing a bound for the mean value ${ }^{1}$

$$
a=\frac{1}{\pi} \int_{0}^{\pi} f(t) d t
$$

when $f(t)$ is such that one of the coefficients b_{n} vanishes.
We can suppose without essential loss of generality that $|f(t)| \leqq 1$. Since $b_{2 n}=0$ whenever $f(t)$ is constant, it is clear that the only conclusion on a that can be drawn from the inequality $|f(t)| \leqq 1$ and the equality $b_{2 n}=0$ is that $|a| \leqq 1$, and this conclusion is valid whether $b_{2 n}$ vanishes or not. Hence we shall restrict attention to $b_{2 n+1}$. For the same reason we shall not discuss the vanishing of the coefficient

$$
a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \cos n t d t
$$

of the Fourier cosine series of $f(t)$.
Suppose that $b_{2 n+1}=0$. Define a positive number y by the equation $y=\sin \left[\sec ^{-1}(2 n+2)\right]$ where the $\sec ^{-1}$ lies between 0 and $\pi / 2$. Let E be the sum of the intervals

$$
\frac{2 p \pi+\sin ^{-1} y}{2 n+1} \leqq t \leqq \frac{(2 p+1) \pi-\sin ^{-1} y}{2 n+1} \quad(p=0,1, \cdots, n),
$$

where the $\sin ^{-1}$ lies between 0 and $\pi / 2$. Then it is clear that

$$
\begin{array}{lr}
\sin (2 n+1) t \geqq y & \text { if } t \text { is in } E, \\
\sin (2 n+1) t<y & \text { if } t \text { is not in } E . \tag{1}
\end{array}
$$

[^0]
[^0]: Received by the editors February 11, 1948, and, in revised form, June 14, 1948.
 ${ }^{1}$ The importance of the concept of mean value in the study of Fourier series can be seen by consulting Bohr [1, pp. 7-29]. Numbers in brackets refer to the bibliography at the end of the paper.

