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THE UNIVERSITY OF TEXAS 

REMARKS ON THE NOTION OF RECURRENCE 

J. WOLFOWITZ 

We give in several lines a simple proof of Poincaré's recurrence 
theorem. 

THEOREM. Let Q, be a point set of finite Lebesgue measure, and T a 
one-to-one measure-preserving transformation of fl into itself.1 Let 
B(ZAC.ti> be measurable sets such that, if bÇ^B, TnbÇ£A for all positive 
integral n. Then the measure m(B) of B is 0. 

PROOF. First we show that, if i <j, {TlB){T^B) = 0. Suppose c£TŒ; 
then from the hypothesis on B it follows that j is the smallest integer 
such that T~3'cEA. Hence c(£T*B. Now if m(B) = 5>0 , O would con­
tain infinitely many disjunct sets TnB, each of measure 5. This con­
tradiction proves the theorem. 

The following generalization of the above theorem is trivially 
obvious: The result holds if we replace the hypothesis that T is 
measure-preserving by the following: If m(D) > 0 , lim sup»• m{ Tl(D)} 
> 0 . 
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1 For a discussion in probability language see M. Kac, On the notion of recurrence 

in discrete stochastic processes, Bull. Amer. Math. Soc. vol. 53 (1947) pp. 1002-1010. 


