A PROPERTY OF POWER SERIES WITH
POSITIVE COEFFICIENTS

P. ERDJS, W. FELLER, AND H. POLLARD

The following theorem is suggested by a problem in the theory of
probability.!

Let pi be a sequence of non-negative numbers for which Y g pr=1,
and let m= Dy kpr < ©. Suppose further that

0

P(x) = 3 pun®
0
s not a power series in x* for any integer t>1. Then 1—P(x) has no
geros in the circle |x| <1, and the series

has the property

lim %, = 1/m.
n—w
(If m= », we define 1/m to be zero.)

We shall first give a proof in case m < «. The method used is not
elementary, but yields somewhat more information than stated in the
theorem. Later in this paper an elementary proof is given, valid for
both m <« and m= .

We suppose that m < . Let

) o = i pr»  R(x) = irnx".
k=n+1 0

Then m= D g7 and

(2) 1 — P(x) = (1 — #)R(x).

Since m < « the power series for R(x) converges absolutely and
uniformly in lx[ =1. We claim that R(x) has no zeros for le =1
For [x[ <1 this is clear from (2), since P(x) has positive coefficients
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