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We shall present some observations on the reality of zeros of 
Bessel functions of real order, that is, functions satisfying the dif
ferential equation 

d2y dy 
(1) s2 — + z — + (s2 - v2)y = 0 

dz2 dz 
with v real. The two linearly independent solutions Jv{z) and Yv{z) 
may be denned by 

\2 / r«o rlT(v + r+l) 

and 

Jv(z) COS VIT — J-V(z) 
Yv(z) = for v not an integer, 

sin VT 
(3) 

Yn(z) = lim Yv(z) for integers w. 

Jv and Fv are in general many-valued functions of z. If in (2) we 
replace z by the positive real variable x and use the principal value of 
(x/2)v, a real valued function, JP(x), is obtained. Substituting Jv{x) 
for Jv(z) in (3) gives a real function Yv(x). 

All branches of any Bessel function, B(z), can be obtained by 
analytic continuation of a function 

B(x) = (a + ib)Jv(x) + (h+ ik)Y,(x), 

where a, b, h, and & are real numbers. In particular let B(x, m) stand 
for the result of continuing B(x) through an angle of tnir along a 
circle with center at the origin. Restricting m to be an integer, it can 
be shown1 that 

B(x, m) = [(aC - bS - 2kS cot vw)Jv(x) + (hC + kS)Y,(x)] 

+ i[(bC + aS + 2hS cot vr)J,(x) + (kC - hS)Yv(x)] 

where C = cos rnvw and 5 = sin rnvw. Each real (positive or negative) 
zero on any branch of the analytic function B(z) is a zero of B(x, m) 
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1 See G. N. Watson, A treatise on the tJteory of Bessel functions, p. 75. 
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