ON THE REALITY OF ZEROS OF BESSEL FUNCTIONS

ABRAHAM HILLMAN

We shall present some observations on the reality of zeros of Bessel functions of real order, that is, functions satisfying the differential equation

$$
\begin{equation*}
z^{2} \frac{d^{2} y}{d z^{2}}+z \frac{d y}{d z}+\left(z^{2}-\nu^{2}\right) y=0 \tag{1}
\end{equation*}
$$

with ν real. The two linearly independent solutions $J_{\nu}(z)$ and $Y_{\nu}(z)$ may be defined by

$$
\begin{equation*}
J_{\nu}(z)=\left(\frac{z}{2}\right)^{\nu} \sum_{r=0}^{\infty} \frac{(-1)^{r}(z / 2)^{2 r}}{r!\Gamma(\nu+r+1)} \tag{2}
\end{equation*}
$$

and

$$
\begin{align*}
& Y_{\nu}(z)=\frac{J_{\nu}(z) \cos \nu \pi-J_{-\nu}(z)}{\sin \nu \pi} \text { for } \nu \text { not an integer } \\
& Y_{n}(z)=\lim _{\nu \rightarrow n} Y_{\nu}(z) \text { for integers } n \tag{3}
\end{align*}
$$

J_{ν} and Y_{ν} are in general many-valued functions of z. If in (2) we replace z by the positive real variable x and use the principal value of $(x / 2)^{\nu}$, a real valued function, $J_{\nu}(x)$, is obtained. Substituting $J_{\nu}(x)$ for $J_{\nu}(z)$ in (3) gives a real function $Y_{\nu}(x)$.

All branches of any Bessel function, $B(z)$, can be obtained by analytic continuation of a function

$$
B(x)=(a+i b) J_{\nu}(x)+(h+i k) Y_{v}(x),
$$

where a, b, h, and k are real numbers. In particular let $B(x, m)$ stand for the result of continuing $B(x)$ through an angle of $m \pi$ along a circle with center at the origin. Restricting m to be an integer, it can be shown ${ }^{1}$ that

$$
\begin{aligned}
B(x, m)= & {\left[(a C-b S-2 k S \cot \nu \pi) J_{\nu}(x)+(h C+k S) Y_{\nu}(x)\right] } \\
& +i\left[(b C+a S+2 h S \cot \nu \pi) J_{\nu}(x)+(k C-h S) Y_{\nu}(x)\right]
\end{aligned}
$$

where $C=\cos m \nu \pi$ and $S=\sin m \nu \pi$. Each real (positive or negative) zero on any branch of the analytic function $B(z)$ is a zero of $B(x, m)$

[^0]
[^0]: Presented to the Society, April 17, 1948; received by the editors March 8, $1948 \cdot$
 ${ }^{1}$ See G. N. Watson, A treatise on the theory of Bessel functions. p. 75.

