A METHOD OF ANALYTIC CONTINUATION SUGGESTED BY HEURISTIC PRINCIPLES

H. BRUYNES AND G. RAISBECK¹

Suppose we are given an analytic function f(z) represented by a power series (supposed convergent for some $z \neq 0$)

(1)
$$f(z) = \sum_{n=0}^{\infty} \frac{f_n}{n!} z^n$$

where f_n is the value of the *n*th derivative of f(z) at the origin. For small values of δ we can approximate $f(\delta)$ in the following manner:

(2)
$$f(\delta) \simeq f_0 + \delta f_1.$$

Refinement of this approximation leads to Taylor's theorem and back to the power series (1). It is possible, however, to use the linear approximation in a different way: we can use such approximations to go from one point to another along a chain of points $z = \delta$, 2δ , 3δ , \cdots , $n\delta$. Thus we shall say

$$f(\delta) \simeq f_0 + \delta f_1, \qquad f'(z) \Big|_{z=\delta} \simeq f_1 + \delta f_2,$$

and so on, and

$$f(2\delta) \simeq f(\delta) + \delta f'(z) \Big|_{z=\delta} \simeq f_0 + 2\delta f_1 + \delta^2 f_2.$$

In general

(3)
$$f(n\delta) \simeq \sum_{m=0}^{n} a_{n,m} f_m \delta^m.$$

It is easily verified that $a_{n,m} = a_{n-1,m} + a_{n-1,m-1}$ and hence that $a_{n,m}$ is the binomial coefficient $C_{n,m}$. If we now define the following:

(4)
$$\sigma_n(z) = \sum_{m=0}^n f_m C_{n,m} \left(\frac{z}{n}\right)^m$$

and if $n\delta = z$, then (3) is equivalent to

(5)
$$f(z) \simeq \sigma_n(z).$$

The question now presents itself: for what values of z does the sequence of polynomials $\sigma_n(z)$ converge to the function f(z)? It is evident that if z is inside the circle of convergence of the series (1), then

Received by the editors February 17, 1948.

¹ The authors are indebted to Prof. R. Salem for help and advice.