ON THE EXTENSION OF A TRANSFORMATION

EARL J. MICKLE

0 . Introduction. In a problem on surface area the writer and Helsel ${ }^{1}$ were confronted with the following question. Can a Lipschitzian transformation from a set in a Euclidean three-space into a Euclidean three-space be extended to a Lipschitzian transformation defined on the whole space? The affirmative answer to this question has been given by Kirszbraun. ${ }^{2}$ In fact, Kirszbraun shows this result for any Euclidean spaces (see also Valentine). ${ }^{3}$ In studying these papers the writer noted that a more general extension problem could be formulated and a different method of proof to the problem could be obtained. To formulate the more general problem we first give some definitions.

Let M be a metric space, the distance between two points $p_{1}, p_{2} \in M$ being denoted by $p_{1} p_{2}$. Let $P(M)$ be the class of real-valued continuous functions $g(t), 0 \leqq t<\infty$, which satisfy the conditions: (a) $g(0)=0$, (b) $g(t)>0$ for $t>0$, (c) for any finite number of points $p_{0}, p_{1}, \cdots, p_{m}$ in M the real quadratic form $\sum_{i, j=1}^{m}\left[g\left(p_{0} p_{i}\right)^{2}+g\left(p_{0} p_{j}\right)^{2}\right.$ $\left.-g\left(p_{i} p_{j}\right)^{2}\right] \xi_{i} \xi_{j}$ is positive. Let $g(t) \in \mathscr{P}(M)$. A transformation $p^{*}=\phi(p)$ from a set E in M into a metric space M^{*} will be said to satisfy the condition $C(g)$ on E if, for every pair of points $p_{1}, p_{2} \in E$, $p_{1}{ }^{*} p_{2}^{*} \leqq g\left(p_{1} p_{2}\right)$, where $p_{i}^{*}=\phi\left(p_{i}\right), i=1,2$. We shall say that $\phi(p)$ can be extended to a set $E^{\prime}, E \subset E^{\prime} \subset M$, preserving the condition $C(g)$ if there exists a transformation $p^{*}=\Phi(p)$ from E^{\prime} into M^{*} which satisfies the condition $C(g)$ on E^{\prime} and is equal to $\phi(p)$ on E.

In this paper we prove the following result. Let M be a separable metric space and let $g(t) \in P(M)$. Then any transformation from a set E in M into a Euclidean space which satisfies the condition $C(g)$ on E can be extended to M preserving the condition $C(g)$.

We give two examples to illustrate this result. We shall use the vector notation x to represent a point in a Euclidean n-space E_{n}, and we shall denote by $\left|x_{1}-x_{2}\right|$ the distance between two points x_{1}, x_{2}. Let $x_{0}, x_{1}, \cdots, x_{m}$ be $m+1$ points in E_{n} and let ξ_{1}, \cdots, ξ_{m} be m real numbers. From the relation $\left(x_{i}-x_{j}\right)^{2}=\left(x_{0}-x_{i}\right)^{2}+\left(x_{0}-x_{j}\right)^{2}$ $-2\left(x_{0}-x_{i}\right)\left(x_{0}-x_{j}\right)$, the square of the vector $x=L \xi_{1}\left(x_{0}-x_{1}\right)+\cdots$

[^0]
[^0]: Received by the editors November 26, 1947, and, in revised form, February 4, 1948.
 ${ }^{1}$ Helsel and Mickle, Bull. Amer. Math. Soc. vol. 54 (1948) pp. 235-238.
 ${ }^{2}$ Kirszbraun, Fund. Math. vol. 22 (1934) pp. 77-108.
 ${ }^{3}$ Valentine, Bull Amer. Math. Soc. vol. 49 (1943) pp. 100-108.

