ON THE EXTENSION OF A TRANSFORMATION

EARL J. MICKLE

0. Introduction. In a problem on surface area the writer and Helsel¹ were confronted with the following question. Can a Lipschitzian transformation from a set in a Euclidean three-space into a Euclidean three-space be extended to a Lipschitzian transformation defined on the whole space? The affirmative answer to this question has been given by Kirszbraun.² In fact, Kirszbraun shows this result for any Euclidean spaces (see also Valentine).³ In studying these papers the writer noted that a more general extension problem could be formulated and a different method of proof to the problem could be obtained. To formulate the more general problem we first give some definitions.

Let *M* be a metric space, the distance between two points $p_1, p_2 \in M$ being denoted by p_1p_2 . Let $\mathcal{P}(M)$ be the class of real-valued continuous functions $g(t), 0 \leq t < \infty$, which satisfy the conditions: (a) g(0) = 0, (b) g(t) > 0 for t > 0, (c) for any finite number of points p_0, p_1, \dots, p_m in *M* the real quadratic form $\sum_{i,j=1}^{m} [g(p_0p_i)^2 + g(p_0p_j)^2 - g(p_ip_j)^2]\xi_i\xi_j$ is positive. Let $g(t) \in \mathcal{P}(M)$. A transformation $p^* = \phi(p)$ from a set *E* in *M* into a metric space *M** will be said to satisfy the condition C(g) on *E* if, for every pair of points $p_1, p_2 \in E$, $p_1^*p_2^* \leq g(p_1p_2)$, where $p_i^* = \phi(p_i), i = 1, 2$. We shall say that $\phi(p)$ can be extended to a set $E', E \subset E' \subset M$, preserving the condition C(g) if there exists a transformation $p^* = \Phi(p)$ from E' into M^* which satisfies the condition C(g) on E' and is equal to $\phi(p)$ on *E*.

In this paper we prove the following result. Let M be a separable metric space and let $g(t) \in \mathcal{P}(M)$. Then any transformation from a set E in M into a Euclidean space which satisfies the condition C(g) on E can be extended to M preserving the condition C(g).

We give two examples to illustrate this result. We shall use the vector notation x to represent a point in a Euclidean *n*-space E_n , and we shall denote by $|x_1-x_2|$ the distance between two points x_1, x_2 . Let x_0, x_1, \dots, x_m be m+1 points in E_n and let ξ_1, \dots, ξ_m be m real numbers. From the relation $(x_i-x_j)^2 = (x_0-x_i)^2 + (x_0-x_j)^2 - 2(x_0-x_i)(x_0-x_j)$, the square of the vector $x = L\xi_1(x_0-x_1) + \cdots$

Received by the editors November 26, 1947, and, in revised form, February 4, 1948.

¹ Helsel and Mickle, Bull. Amer. Math. Soc. vol. 54 (1948) pp. 235-238.

² Kirszbraun, Fund. Math. vol. 22 (1934) pp. 77-108.

³ Valentine, Bull Amer. Math. Soc. vol. 49 (1943) pp. 100-108.