ON THE CHARACTERISTIC EQUATIONS OF CERTAIN MATRICES

W. V. PARKER

In a recent paper Brauer ${ }^{1}$ proved the following theorem credited to R. v. Mises.

Theorem. Let $A=\left(a_{i j}\right), B=\left(b_{i j}\right)$, and $C=\left(c_{i j}\right)$ be square matrices of order n. If the elements of A and C satisfy the conditions

$$
\begin{array}{rlr}
r_{i}=\sum_{j=1}^{n} a_{i j}=0 & (i=1,2, \cdots, n), \\
s_{j}=\sum_{i=1}^{n} a_{i j}=0 & (j=1,2, \cdots, n) \\
c_{i j}=c_{i}+c_{j} & (i, j=1,2, \cdots, n), \tag{3}
\end{array}
$$

where $c_{1}, c_{2}, \cdots, c_{n}$ are arbitrary numbers, then the matrices $A B$ and $A(B+C)$ have the same characteristic equation.

Write $C_{1}=c^{\prime} e$ where $c=\left(c_{1}, c_{2}, \cdots, c_{n}\right)$ and $e=(1,1, \cdots, 1)$ then conditions (1), (2), and (3) are $A C_{1}^{\prime}=0, C_{1} A=0$ and $C=C_{1}+C_{1}^{\prime}$. This is a special case of the following theorem.

Theorem. Let A, C_{1}, and C_{2} be n-rowed square matrices such that $C_{1} A=A C_{2}=0$. If $C=C_{1}+C_{2}$ and B is an arbitrary n-rowed square matrix, then $A B$ and $A(B+C)$ have the same characteristic equation.

The theorem is trivial if A is nonsingular, for then $C=0$. The proof will be based on the well known lemma:

Lemma. If A and B are square matrices, $A B$ and $B A$ have the same characteristic equation.

Since $A C_{2}=0, A(B+C)=A\left(B+C_{1}\right)$ and from the lemma it follows that $A\left(B+C_{1}\right)$ has the same characteristic equation as $\left(B+C_{1}\right) A$ $=B A$, and $B A$ has the same characteristic equation as $A B$.

It may be readily shown that if A and C are matrices (not necessarily square) such that $A C A=0$, then $C=C_{1}+C_{2}$ where $A C_{2}=C_{1} A$ $=0$. Also if A is an $m \times n$ matrix and B and C are $n \times m$ matrices and $A C A=0$, there exists a nonsingular matrix P, such that

[^0]
[^0]: Received by the editors February 23, 1948.
 ${ }^{1}$ Alfred Brauer, On the characteristic equations of certain matrices, Bull. Amer. Math. Soc. vol. 53 (1947) pp. 605-607.

