ON THE CHARACTERISTIC EQUATIONS OF CERTAIN MATRICES

W. V. PARKER

In a recent paper Brauer¹ proved the following theorem credited to R. v. Mises.

THEOREM. Let $A = (a_{ij})$, $B = (b_{ij})$, and $C = (c_{ij})$ be square matrices of order n. If the elements of A and C satisfy the conditions

(1)
$$r_i = \sum_{j=1}^n a_{ij} = 0$$
 $(i = 1, 2, \dots, n),$

(2)
$$s_j = \sum_{i=1}^n a_{ij} = 0$$
 $(j = 1, 2, \cdots, n),$

(3)
$$c_{ij} = c_i + c_j$$
 $(i, j = 1, 2, \cdots, n),$

where c_1, c_2, \dots, c_n are arbitrary numbers, then the matrices AB and A(B+C) have the same characteristic equation.

Write $C_1 = c'e$ where $c = (c_1, c_2, \dots, c_n)$ and $e = (1, 1, \dots, 1)$ then conditions (1), (2), and (3) are $AC'_1 = 0$, $C_1A = 0$ and $C = C_1 + C'_1$. This is a special case of the following theorem.

THEOREM. Let A, C_1 , and C_2 be n-rowed square matrices such that $C_1A = AC_2 = 0$. If $C = C_1 + C_2$ and B is an arbitrary n-rowed square matrix, then AB and A(B+C) have the same characteristic equation.

The theorem is trivial if A is nonsingular, for then C=0. The proof will be based on the well known lemma:

LEMMA. If A and B are square matrices, AB and BA have the same characteristic equation.

Since $AC_2 = 0$, $A(B+C) = A(B+C_1)$ and from the lemma it follows that $A(B+C_1)$ has the same characteristic equation as $(B+C_1)A = BA$, and BA has the same characteristic equation as AB.

It may be readily shown that if A and C are matrices (not necessarily square) such that ACA = 0, then $C = C_1 + C_2$ where $AC_2 = C_1A = 0$. Also if A is an $m \times n$ matrix and B and C are $n \times m$ matrices and ACA = 0, there exists a nonsingular matrix P, such that

Received by the editors February 23, 1948.

¹ Alfred Brauer, On the characteristic equations of certain matrices, Bull. Amer. Math. Soc. vol. 53 (1947) pp. 605-607.