RECURSION AND DOUBLE RECURSION

RAPHAEL M. ROBINSON

1. Introduction. We shall apply the results of $P R F^{1}$ to construct by double recursion two functions which are not themselves primitive recursive, but which are related in interesting ways to the class of primitive recursive functions. In a sense, this note is a revised version of a paper by Rózsa Péter, ${ }^{2}$ much simplified by the use of PRF.

Let $S x$ denote the successor of x. We shall say that a function $G_{n} x$ of two variables n and x is defined by a double recursion from certain given functions, if
(1) $G_{0} x$ is a given function of x.
(2) $G_{S n} 0$ is obtained by substitution from $G_{n} z$ (considered as a function of z) and from given functions.
(3) $G_{S n} S x$ is obtained by substitution from the number $G_{S n} x$, from $G_{n} z$ (considered as a function of z), and from given functions.

It is clear that if the given functions are primitive recursive, then $G_{n} x$ is a primitive recursive function of x for each fixed n. However, as we shall see, $G_{n} x$ need not be a primitive recursive function of n and x.

In §2, we shall show that the double recursion

$$
G_{0} x=S x, \quad G_{S n} 0=G_{n} 1, \quad G_{S n} S x=G_{n} G_{S n} x
$$

defines a function $G_{n} x$ which majorizes all primitive recursive functions of one variable in the following sense: If $F x$ is a primitive recursive function of x, then there exists a number n such that

$$
F x<G_{n} x
$$

for all x. It is also shown that $G_{n} x$ is an increasing function of n, so that

$$
F x<G_{x} x
$$

for all sufficiently large x. It follows that $G_{x} x$ is not a primitive recursive function of x, and hence that $G_{n} x$ is not a primitive recursive

[^0]
[^0]: Presented to the Society, November 29, 1947; received by the editors November 3, 1947.
 ${ }^{1}$ R. M. Robinson, Primitive recursive functions, Bull. Amer. Math. Soc. vol. 53 (1947) pp. 925-942.
 ${ }^{2}$ R. Péter, Konstruktion nichtrekursiver Funktionen, Math. Ann. vol. 111 (1935) pp. 42-60.

