CORRECTION TO MY PAPER "NOTE ON AFFINELY CONNECTED MANIFOLDS"

SHIING-SHEN CHERN

In my recent paper [1] ${ }^{1}$ Note on affinely connected manifolds I gave a proof of a theorem on affinely connected manifolds. As was pointed out by H. Whitney, the fact that I made use of in the proof, that the space of all real matrices $\left(a_{i}^{3}\right),\left|a_{i}^{3}\right|>0$, is simply connected, is erroneous. But the theorem I intended to prove is true. I present in the following lines a revised proof, in which are clarified at the same time certain ambiguities of that note.
We begin by considering the space $M(n)$ of all real matrices $\left(a_{i}^{3}\right)$, $i, j=1, \cdots, n$ with $\Delta \equiv\left|a_{i}^{j}\right|>0$. Let $R(n)$ denote the group space of the proper orthogonal group in n variables. There is a natural way to imbed $R(n)$ in $M(n)$ and it is well known that $R(n)$ is a deformation retract of $M(n)$ [2]. In particular, it follows that $R(n)$ and $M(n)$ have the same homotopy type and hence isomorphic homotopy groups. Thus the fundamental group of $M(n)$ is free cyclic if $n=2$ and is cyclic of order two if $n \geqq 3$.

We denote by $\psi: R(n) \rightarrow M(n)$ the identity mapping and by $f: M(n)$ $\rightarrow R(n)$ the deformation such that under f every point of $R(n)$ remains fixed. Let ψ and f denote at the same time the induced homomorphisms of the (singular) chains and ψ^{*} and f^{*} the corresponding dual homomorphisms of the cochains. Since f is a deformation, we have, for every one-dimensional cycle Z of $M(n), Z \sim \psi f(Z)$. It follows that

$$
\int_{z} \frac{d \Delta}{\Delta}=\int_{\psi f(Z)} \frac{d \Delta}{\Delta}=\int_{f(Z)} \psi^{*}\left(\frac{d \Delta}{\Delta}\right)=0,
$$

since $\Delta=1$ in $R(n)$. In other words, in $M(n)$ the integral of $d \Delta / \Delta$ over any one-dimensional cycle is zero.

It is possible to express the differential form $d \Delta / \Delta$ in terms of a_{i}^{3}. In fact, let b_{j}^{k} be defined by $a_{i}^{\prime} b_{j}^{k}=b_{i}^{j} a_{j}^{k}=\delta_{i}^{k}$. Then it is easy to verify that

$$
d \Delta / \Delta=d a_{i}^{j} b_{j}^{i} .
$$

These remarks on the group manifold being made, let us return to the affinely connected manifold M. Let \mathfrak{F} be the vector bundle of all ordered sets of n linearly independent contravariant vectors through

[^0]
[^0]: Received by the editors November 3, 1947.
 ${ }^{1}$ Numbers in brackets refer to the references cited at the end of the paper.

