factors have a compact product³ and the product of the remaining factors is metrisable.⁴

REMARK. In Theorem 4, the hypothesis that the factor spaces be metric cannot be much weakened. This is shown by an example of R. H. Sorgenfrey (see [4]), in which the product of a paracompact (and thus fully normal) space with itself is not even normal.

BIBLIOGRAPHY

1. P. Alexandroff and H. Hopf, Topologie I, Berlin, 1935.

2. J. Dieudonné, Une généralisation des espaces compacts, J. Math. Pures Appl. vol. 23 (1944) pp. 65-76.

3. C. Kuratowski, Topologie I, Warsaw 1933.

4. R. H. Sorgenfrey, On the topological product of paracompact spaces, Bull. Amer. Math. Soc. vol. 53 (1947) pp. 631, 632.

5. J. W. Tukey, *Convergence and uniformity in general topology*, Annals of Mathematics Studies, no. 2, Princeton, 1940.

TRINITY COLLEGE, UNIVERSITY OF CAMBRIDGE

⁸ A theorem of Tychonoff; see, for example, [5, p. 75] for a simple proof.

⁴ See, for example, [3, p. 88].

TRANSITIVITY AND EQUICONTINUITY¹

W. H. GOTTSCHALK

Let X be a metric space with metric ρ and let G be a group of homeomorphisms on X. If $x \in X$ and $g \in G$, then xg denotes the image of the point x under the transformation g. If $x \in X$ and $F \subset G$, then xF denotes $\bigcup_{g \in F} xg$. G is said to be algebraically transitive provided that xG = X for some $x \in X$ (and therefore for every $x \in X$). G is said to be topologically transitive provided that $(xG)^* = X$ for some $x \in X$, where the star denotes the closure operator. G is said to be equicontinuous provided that to each $\epsilon > 0$ there corresponds $\delta > 0$ such that $x, y \in X$ with $\rho(x, y) < \delta$ implies $\rho(xg, yg) < \epsilon$ ($g \in G$).

With respect to the following lemma compare [4].²

LEMMA. If X is a complete separable metric space and also a multiplicative group, if the center of X is dense in X and if the function xy

982

Presented to the Society, December 31, 1947; received by the editors November 29, 1947.

¹ Prepared under the sponsorship of the Office of Naval Research.

² Numbers in brackets refer to the bibliography at the end of the paper.