THE STRUCTURE OF MINIMAL SETS

MARIANO GARCIA AND GUSTAV A. HEDLUND

1. Introduction. A minimal set is a topological space X acted on by a topological group T such that the orbit closure of every point in X coincides with X. If G is a relatively dense subgroup of T, the orbit closure under G of a point of X may or may not coincide with X. In this paper the properties of the orbit closures under such a subgroup are studied and several of the possibilities are analyzed. There is displayed an example of a regularly almost periodic point such that not all points in the orbit closure are regularly almost periodic.
2. The decomposition of a minimal set by relatively dense subgroups. Let X be a compact metric space and let T be an additive abelian topological group. Let f be a continuous transformation of the product space $X \times T$ into X. We denote the image of the point $x \times t$ under f by either $f(x, t)$ or $f^{t}(x)$. We assume that f defines a transformation group in that if $t, s \in T, x \in X$, then

$$
\begin{align*}
f^{0}(x) & =x \tag{1}\\
f^{s+t}(x) & =f^{s}\left(f^{t}(x)\right) \tag{2}
\end{align*}
$$

It is easily shown that for fixed t in T, the transformation defined by $x \rightarrow f^{t}(x)$ is a homeomorphism of X onto X. With f satisfying the stated conditions we say that T is a transformation group acting on X.

The subset Y of X is invariant under the subset A of T if $f^{a}(Y)=Y$ for all a in A. If G is a subgroup of T and Y is a subset of X which is invariant under G; then Y is a topological space, G is a topological group, and f defines a continuous transformation of the product $Y \times G$ onto Y such that (1) and (2) are satisfied for all points y in Y and all element pairs g, h in G. Thus G is a transformation group acting on Y.

The orbit of x is the set $f(x, T)$. If A is a subset of T, the orbit of x under A is the set $f(x, A)$.

The space X is minimal under T if for every x in $X, \bar{f}(x, T)=X$, where $\bar{f}(x, T)$ denotes the closure of the set $f(x, T)$. The subset A of T is relatively dense in T if there exists a compact subset C of T such that $T=A+C$. The point x of X is almost periodic under T if, corresponding to any neighborhood U of x, there exists a set A, relatively dense in T, such that $f(x, A) \subset U$.

[^0]
[^0]: Presented to the Society, December 31, 1947; received by the editors October 18, 1947.

