ON THE LOCATION OF THE ZEROS OF THE DERIVATIVES OF A POLYNOMIAL SYMMETRIC IN THE ORIGIN

J. L. WALSH

If the zeros of a polynomial $p(z)$ when plotted in the z-plane are symmetric in $0: z=0$, the zeros of the derivative $p^{\prime}(z)$ of $p(z)$ can profitably be studied by transforming onto the w-plane, with $w=z^{2}$, and applying known theorems there. ${ }^{1}$ It is the purpose of the present note to carry that study somewhat farther than has been previously done, in particular to consider the higher derivatives of $p(z)$.

Under the transformation $w=u+i v=z^{2}=(x+i y)^{2}$, an arbitrary line $A u+B v+C=0$ in the w-plane corresponds to an equilateral hyperbola $A\left(x^{2}-y^{2}\right)+2 B x y+C=0$ in the z-plane with center 0 or to two perpendicular lines intersecting at 0 . A half-plane in the w plane for which $w=0$ is an interior or exterior point corresponds in the z-plane respectively to the exterior or interior of an equilateral hyperbola whose center is 0 ; a half-plane for which $w=0$ is a boundary point corresponds to a double sector with vertex $z=0$ and angle $\pi / 2$. A point z is considered to be exterior or interior to a hyperbola according as the curve at its nearest point is convex or concave toward z.
We write the given polynomial in the form

$$
\begin{equation*}
p(z)=z^{2} \prod_{i=1}^{q}\left(z^{2}-\alpha_{j}^{2}\right), \quad \quad \alpha_{i} \neq 0, \tag{1}
\end{equation*}
$$

and in the w-plane study the polynomials $\left(w=z^{2}\right)$

$$
\begin{equation*}
P(w)=P\left(z^{2}\right)=[p(z)]^{2}, \quad P^{\prime}(w)=p(z) \cdot p^{\prime}(z) / z . \tag{2}
\end{equation*}
$$

Each zero of $P(w)$ corresponds to a zero of $p(z)$ and reciprocally; each zero of $P^{\prime}(w)$ corresponds to a zero of $p(z)$ or $p^{\prime}(z)$ and reciprocally except that $z=0$ is a zero of $p^{\prime}(z)$ unless $z=0$ is a simple zero of $p(z)$.

We have (loc. cit.) by Lucas' Theorem
Theorem 1. If the zeros of $p(z)$ are symmetric in 0 and lie in the closed exterior of an equilateral hyperbola with center 0 or in the closed exterior of a double sector with vertex 0 and angle $\pi / 2$, then the zeros of $p^{\prime}(z)$ lie also in that closed exterior.
If the zeros of $p(z)$ are symmetric in 0 and lie in the closed interior of an equilateral hyperbola with center 0 , then the zeros of $p^{\prime}(z)$ also lie in that closed interior except for a simple zero at 0 .

[^0]
[^0]: Received by the editors December 4, 1947.
 ${ }^{1}$ Walsh, Mathematica vol. 8 (1933) pp. 185-190.

