EXISTENCE THEOREMS CONNECTED WITH THE PICARD-VESSIOT THEORY OF HOMOGENEOUS LINEAR ORDINARY DIFFERENTIAL EQUATIONS

E. R. KOLCHIN

1. Introduction. The Picard-Vessiot theory, as recently reformulated by the author,¹ deals with an abstract ordinary differential field \mathcal{J} of characteristic 0 having an algebraically closed field of constants \mathcal{C} , and a differential extension field \mathcal{G} over \mathcal{J} with the two properties:

(a) There exists a homogeneous linear differential polynomial $L(y) = y^{(n)} + p_1 y^{(n-1)} + \cdots + p_n y$ (each p_i in \mathcal{I}) which has a fundamental system of solutions η_1, \cdots, η_n such that $\mathcal{G} = \mathcal{J}\langle \eta_1, \cdots, \eta_n \rangle$;² (b) The field of constants of \mathcal{G} is \mathcal{O}

(b) The field of constants of G is C.

Such a G is called a *Picard-Vessiot* extension of \mathcal{F} . It is to be noted that the extension G is given, and the existence of the differential polynomial L(y) with the properties (a) and (b) is postulated. It is not immediately apparent, and it would be of interest to know, whether a given L(y), with coefficients p_i in \mathcal{F} , always has a fundamental system of solutions η_1, \dots, η_n such that $\mathcal{F}(\eta_1, \dots, \eta_n)$ is a Picard-Vessiot extension of \mathcal{F} (that is, contains no constant not in \mathcal{C}). This question was posed by R. Baer (in his critical note on the then current status of the Picard-Vessiot theory, included among comments by O. Haupt in F. Klein's *Vorlesungen über hypergeometrische Funktionen*, Berlin, 1933), who remarked that the difficulty lay not in proving the existence of a fundamental system of solutions (see PV, §15), but in proving the existence of one which brings in no new constants.

A differential extension field \mathcal{K} of \mathcal{J} may be an extension of \mathcal{J} by integrals, exponentials of integrals, and algebraic functions. If it is, and if the field of constants of \mathcal{K} is still \mathcal{C} , then \mathcal{K} is called a *liouvillian* extension of \mathcal{J} . The Picard-Vessiot theory provides a group-theoretic answer to the question of when a Picard-Vessiot extension \mathcal{G} of \mathcal{J} is

Presented to the Society, April 17, 1948; received by the editors November 7, 1947.

¹ Algebraic matric groups and the Picard-Vessiot theory of homogeneous linear ordinary differential equations, Ann. of Math. (2) vol. 49 (1948) pp. 1-42. This paper, referred to below as "PV", contains the necessary background for the present note.

² The notation $\mathcal{J}\langle \cdots \rangle$ indicates, as usual, differential field adjunction. Thus $\mathcal{J}\langle \eta_1, \cdots, \eta_n \rangle$ is the differential field consisting of all differential rational functions of η_1, \cdots, η_n with coefficients in \mathcal{J} .