If we make this assumption it follows that \mathfrak{M} annuls $\partial A / \partial y_{1}$, where r is the order of A in y_{1}. Let s be the order of A in y_{2}. We form the resultant R of A and $\partial A / \partial y_{1 r}$, considered as algebraic polynomials in y_{28}. Since A is irreducible, and cannot be a factor of $\partial A / \partial y_{1 r}$, R is a nonzero polynomial, free of $y_{2 z}$, which is annulled by \mathfrak{M}. Since R is of lower efiective order than A in y_{2}, \mathfrak{M} must be an essential singular manifold of A relative to y_{2}. The proof is now complete.

Rutgers University

DISTINCT REPRESENTATIVES OF SUBSETS

MARSHALL HALL, JR.

1. Introduction. Let W be a set of elements $a_{i}^{\prime} \cdot W=\left\{a_{1}, \cdots\right\}$ and let $U\left\{S_{1}, \cdots, S_{j}, \cdots\right\}$ be an indexed system of subsets of W. We wish to choose distinct representatives of the subsets. If $a_{j}=R\left(S_{j}\right)$ designates the representative of the subset S_{j}, then we require $R\left(S_{j}\right) \in S_{j}$ for all j and $R\left(S_{j}\right) \neq R\left(S_{k}\right)$ if $j \neq k$. It is to be emphasized that subsets are distinguished only by their indices and distinct subsets may contain the same elements. An obviously necessary condition for the existence of distinct representatives is:

Condition C: Every k distinct subsets contain between them at least k distinct elements, for every finite k. P. Hall ${ }^{1}$ has shown that if the number of subsets is finite, condition C is also sufficient for the existence of a system of distinct representatives, or SDR as we shall abbreviate. This condition is no longer sufficient if the number of subsets is infinite. As a counter example consider $U\left(S_{0}, S_{1}, \cdots\right\}$ where $S_{0}=\left\{a_{1}, a_{2}, \cdots\right\}, S_{i}=\left\{a_{i}\right\}, i=1,2, \cdots$. Here condition C is easily shown to hold for the subsets, but clearly no representative may be selected for S_{0} which is not also a representative of some S_{i}.

In this paper it is shown that condition C is sufficient if every subset S_{j} is finite, and also an estimate on the number of systems of distinct representatives is given. This latter result is applied to Latin squares.

Theorem 1. Given an indexed system $U\left\{S_{1}, \cdots, S_{j}, \cdots\right\}$ of finite subsets of a set $W\left\{a_{1}, \cdots, a_{i}, \cdots\right\}$. If the subsets satisfy condi-

[^0]
[^0]: Received by the editors October 21, 1947, and, in revised form, November 8, 1947.
 ${ }^{1}$ P. Hall, On representatives of subsets, J.London Math. Soc. vol. 10 (1935) pp. 2630.

