If we make this assumption it follows that \mathfrak{M} annuls $\partial A/\partial y_{1r}$, where *r* is the order of *A* in y_1 . Let *s* be the order of *A* in y_2 . We form the resultant *R* of *A* and $\partial A/\partial y_{1r}$, considered as algebraic polynomials in y_{2s} . Since *A* is irreducible, and cannot be a factor of $\partial A/\partial y_{1r}$, *R* is a nonzero polynomial, free of y_{2s} , which is annulled by \mathfrak{M} . Since *R* is of lower effective order than *A* in y_2 , \mathfrak{M} must be an essential singular manifold of *A* relative to y_2 . The proof is now complete.

RUTGERS UNIVERSITY

DISTINCT REPRESENTATIVES OF SUBSETS

MARSHALL HALL, JR.

1. Introduction. Let W be a set of elements $a'_i \cdot W = \{a_1, \dots\}$ and let $U\{S_1, \dots, S_j, \dots\}$ be an indexed system of subsets of W. We wish to choose distinct representatives of the subsets. If $a_j = R(S_j)$ designates the representative of the subset S_j , then we require $R(S_j) \in S_j$ for all j and $R(S_j) \neq R(S_k)$ if $j \neq k$. It is to be emphasized that subsets are distinguished only by their indices and distinct subsets may contain the same elements. An obviously necessary condition for the existence of distinct representatives is:

Condition C: Every k distinct subsets contain between them at least k distinct elements, for every finite k. P. Hall¹ has shown that if the number of subsets is finite, condition C is also sufficient for the existence of a system of distinct representatives, or SDR as we shall abbreviate. This condition is no longer sufficient if the number of subsets is infinite. As a counter example consider $U(S_0, S_1, \cdots)$ where $S_0 = \{a_1, a_2, \cdots\}, S_i = \{a_i\}, i = 1, 2, \cdots$. Here condition C is easily shown to hold for the subsets, but clearly no representative may be selected for S_0 which is not also a representative of some S_i .

In this paper it is shown that condition C is sufficient if every subset S_j is finite, and also an estimate on the number of systems of distinct representatives is given. This latter result is applied to Latin squares.

THEOREM 1. Given an indexed system $U\{S_1, \dots, S_j, \dots\}$ of finite subsets of a set $W\{a_1, \dots, a_i, \dots\}$. If the subsets satisfy condi-

Received by the editors October 21, 1947, and, in revised form, November 8, 1947.

¹ P. Hall, On representatives of subsets, J. London Math. Soc. vol. 10 (1935) pp. 26-30.