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It is known that two normal matrices can be diagonalized by the 
same unitary transformation if and only if they commute ; this theo
rem is ordinarily stated for hermitian matrices. Some generalizations 
of this theorem are known. According to a theorem due to Eckert 
and Young,1 if A and B are two rXs matrices, there are two unitary 
matrices U and V such that UAV=DX and UBV=D2, D\ and D2 

diagonal matrices with real elements, if and only if ABct and Bct A are 
hermitian. I t is also known that a set of normal matrices {Ai} is 
reducible to diagonal matrices under the same unitary similarity 
transformation, UAiUct, if and only if AiA3- = AjAi for all i and j . 
(More generally, it is true that a set of matrices {Ai} with elements 
in the complex field and simple elementary divisors is reducible to 
diagonal matrices under the same similarity transformation if and 
only if AiAj=AjAi for all i and j.) The following will be shown to 
hold: 

THEOREM. If {Ai} is an arbitrary set of nonzero rXs matrices, there 
are unitary matrices U and V of orders rXr and sXs, respectively, such 
that UAiV=Di, Di diagonal and real, if and only if AiAf—AjAf and 
AfAi = AfAjfor all i and j . 

If two unitary matrices U and F exist such that UAi V—Di, Di real 
for all i, then DiDc} = DiD) = DjD\^DjD% where the Di are rXs di
agonal matrices (that is, the only nonzero elements appear in the da 
position). Therefore, AiAf = A3Af. 

Conversely, let the relations AfAt^AfAj and AiAf=AjAf hold 
for all i, j . The proof is by induction. 

(1) The theorem is true for a set of matrices of dimension lXs, 
Ai= [a[, a", • • • , a[s)]. For there exist unitary matrices U and V 
such that 1 UAiV= [d{, 0, • • • , 0] for d{ real and greater than 0 
since ^ i ^ O . For if UAiV*=[dl, d[', • • • , d[s)], it follows from 
AfAi=A?Ai thatdi' =d<" = • • • =d[s) = 0 and since d{ dl = J / -di 
and d{ is real, d[ =d{. In the same way by means of the second of 
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1 Bull. Amer. Math. Soc. vol. 45 (1939) pp. 118-121. See also J. Williamson, Bull. 
Amer. Math. Soc. vol. 45 (1939) pp. 920-922. 
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