SOME ANALOGS OF THE GENERALIZED PRINCIPAL AXIS TRANSFORMATION

N. A. WIEGMANN

It is known that two normal matrices can be diagonalized by the same unitary transformation if and only if they commute; this theorem is ordinarily stated for hermitian matrices. Some generalizations of this theorem are known. According to a theorem due to Eckert and Young, if A and B are two $r \times s$ matrices, there are two unitary matrices U and V such that $UAV=D_1$ and $UBV=D_2$, D_1 and D_2 diagonal matrices with real elements, if and only if AB^{ct} and $B^{ct}A$ are hermitian. It is also known that a set of normal matrices $\{A_i\}$ is reducible to diagonal matrices under the same unitary similarity transformation, UA_iU^{ct} , if and only if $A_iA_j=A_jA_i$ for all i and j. (More generally, it is true that a set of matrices $\{A_i\}$ with elements in the complex field and simple elementary divisors is reducible to diagonal matrices under the same similarity transformation if and only if $A_iA_j=A_jA_i$ for all i and j.) The following will be shown to hold:

THEOREM. If $\{A_i\}$ is an arbitrary set of nonzero $r \times s$ matrices, there are unitary matrices U and V of orders $r \times r$ and $s \times s$, respectively, such that $UA_iV = D_i$, D_i diagonal and real, if and only if $A_iA_i^a = A_jA_i^a$ and $A_i^aA_i = A_i^aA_j$ for all i and j.

If two unitary matrices U and V exist such that $UA_iV = D_i$, D_i real for all i, then $D_iD_j^a = D_iD_j^i = D_jD_i^a = D_jD_i^a$ where the D_i are $r \times s$ diagonal matrices (that is, the only nonzero elements appear in the d_{ii} position). Therefore, $A_iA_j^a = A_jA_i^a$.

Conversely, let the relations $A_j^{\alpha}A_i = A_i^{\alpha}A_j$ and $A_iA_j^{\alpha} = A_jA_i^{\alpha}$ hold for all i, j. The proof is by induction.

(1) The theorem is true for a set of matrices of dimension $1 \times s$, $A_i = [a_i', a_i'', \dots, a_i^{(s)}]$. For there exist unitary matrices U and V such that $UA_1V = [d_1', 0, \dots, 0]$ for d_1' real and greater than 0 since $A_1 \neq 0$. For if $UA_iV = [d_i', d_i'', \dots, d_i^{(s)}]$, it follows from $A_i^{c}A_1 = A_1^{c}A_i$ that $d_i'' = d_i''' = \dots = d_i'^{(s)} = 0$ and since $d_1' \cdot \bar{d}_i' = \bar{d}_1' \cdot d_i'$ and d_1' is real, $\bar{d}_i' = d_i'$. In the same way by means of the second of

Presented to the Society, April 26, 1947; received by the editors November 26, 1947.

¹ Bull. Amer. Math. Soc. vol. 45 (1939) pp. 118–121. See also J. Williamson, Bull. Amer. Math. Soc. vol. 45 (1939) pp. 920–922.