UNIVERSAL QUATERNARY QUADRATIC FORMS

D. C. MORROW

Let the positive quaternary quadratic form $F = \sum_{i,j=1}^{4} b_{ij}x_ix_j$, where b_{ij} are integers and $b_{ij} = b_{ji}$, have its hessian equal to H'. Then it can be shown that every positive quaternary quadratic form whose hessian is H' is equivalent to a form F in which $b_{11} \leq (4H')^{1/4}$, $2|b_{ij}| \leq b_{11}$, j=2, 3, 4, and $b_{11}F - (\sum_{j=1}^{4} b_{1j}x_j)^2$ is a reduced positive ternary quadratic form $T = \sum_{i,j=2}^{4} B_{ij}x_ix_j$ whose hessian is b_{11}^2H' . Further if $b_{11}=2$, we may take $b_{1j} \geq 0$, $B_{23} \geq 0$ and $B_{22}B_{34} - B_{23}B_{24} \geq 0$, and in case $B_{23} = 0$ we may choose $B_{24} \geq 0$. A form satisfying these conditions is a reduced form.

This paper is concerned with the determination of the positive forms $f_0 = \sum_{i,j=1}^{4} c_{ij}x_ix_j$, in which $c_{ij} = c_{ji}$, c_{ii} and $2c_{ij}$ are integers, which are universal. For the case in which $c_{ij} = 0$ if $i \neq j$ the forms which represent all positive integers have been determined by Ramanujan.¹ L. E. Dickson² considered those forms in which $c_{1j} = 0$, j = 2, 3, 4. Since the minimum positive integer which is represented by f_0 is 1, this form is equivalent to a form f whose first coefficient is 1. Let $F = 2f = \sum_{i,j=1}^{4} a_{ij}x_ix_j$, where $a_{ij} = a_{ji}$ are integers, $a_{11} = 2$ and $a_{ii} \equiv 0 \pmod{2}$, be a reduced form whose hessian is H. Then $4f = X^2$ +T where $X = \sum_{j=1}^{4} a_{1j}x_j$ and $T = \sum_{i,j=2}^{4} A_{ij}x_ix_j$ ($A_{ij} = a_{11}a_{ij} - a_{1i}a_{1j}$) is a reduced positive ternary quadratic form whose hessian is 4H. Since f is universal, 4f represents all positive multiples of 4. The minimum positive integer M which is represented by the ternary T is ≤ 8 and $\equiv 0$ or 3 (mod 4). Hence M = 3, 4, 7 or 8.

The ternary form³ $MT = U^2 + Q$ where $U = Mx_2 + A_{23}x_3 + A_{24}x_4$, and $Q = Ax_3^2 + 2Bx_3x_4 + Cx_4^2$ is a reduced binary quadratic form whose hessian is 4MH, and where $A = MA_{33} - A_{23}^2$, $B = MA_{34} - A_{23}A_{24}$ and $C = MA_{44} - A_{24}^2$, while $2|A_{23}|$ and $2|A_{24}|$ are each $\leq M$. We may choose $A_{23} \geq 0$ and $B \geq 0$, while if $A_{23} = 0$, we may take $A_{24} \geq 0$.

The least positive integer A which is represented by Q if M=3 is ≤ 24 and $\equiv 0$ or 8 (mod 24). If M=4, $A \leq 48$ and $\equiv 0$ or 12 (mod 16) if $A_{23}=0$, and $A \equiv 12$ or 8 (mod 16) if $A_{23}=2$. For M=7, $A \leq 84$ and $\equiv 0, -4, -8$, or $-16 \pmod{28}$ according as $A_{23}=0, 1, 2$ or 3. Finally

Presented to the Society, April 6, 1928, under the title All quaternary quadratic forms which represent every positive integer; received by the editors November 26, 1946, and, in revised form, November 9, 1947.

¹ Proc. Cambridge Philos. Soc. vol. 19 (1916-1919) pp. 11-21.

² Amer. J. Math. vol. 49 (1927) pp. 39-56.

⁸ Landau, Handbuch · · · Verteilung der Primzahlen, 1909, p. 545.