A NOTE ON HILBERT'S NULLSTELLENSATZ

RICHARD BRAUER

In a recent paper, O. Zariski ${ }^{1}$ has given a very simple proof of Hilbert's "Nullstellensatz." We give here another proof which while slightly longer is still more elementary.
Let K be an algebraically closed field. We consider a system of conditions

$$
\begin{gather*}
f_{1}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=0, \quad f_{2}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=0 \\
\cdots, f_{r}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=0 \tag{1}\\
g\left(x_{1}, x_{2}, \cdots, x_{n}\right) \neq 0
\end{gather*}
$$

where $f_{1}, f_{2}, \cdots, f_{r}$, and g are polynomials in n indeterminates x_{1}, x_{2}, \cdots, x_{n} with coefficients in K. The theorem states that if the conditions (1) cannot be satisfied by any values x_{i} of $K,{ }^{2}$ a suitable power of g belongs to the ideal $\left(f_{1}, f_{2}, \cdots, f_{r}\right){ }^{3}$

Proof. Let k be the number of x_{j} which actually appear in $f_{1}, f_{2}, \cdots, f_{r}$ and let x_{i} be the x_{j} of this kind with the smallest subscript. Denote by l the number of f_{ρ} in which x_{i} actually appears. Let m be the smallest positive value which occurs as degree in x_{i} of one of the $f_{\rho} .{ }^{4}$ Now define a partial order for the different systems (1) using a lexicographical arrangement. If (1^{*}) is a second system of the same type as (1) and if k^{*}, l^{*}, and m^{*} have the corresponding significance, we shall say that (1^{*}) is lower than (1) if either $k^{*}<k$, or $k^{*}=k$ and $l^{*}<l$, or $k^{*}=k, l^{*}=l$, and $m^{*}<m$.

Suppose now that Hilbert's theorem is false. Then there exist systems (1) which are not satisfied by any values x_{j} in K, and for which no power of g lies in $\left(f_{1}, f_{2}, \cdots, f_{r}\right)$. Choose such a system (1) taking it as low as possible. Then for all systems (1^{*}) lower than (1) the theorem will hold.

If k, l, m have the same significance as above, one of the f_{ρ}, say
Received by the editors November 1, 1947.
${ }^{1}$ Bull. Amer. Math. Soc. vol. 53 (1947) pp. 362-368.
${ }^{2}$ If we wish to formulate the theorem for arbitrary fields K as it is done in Zariski's paper, we have to consider a system of values $x_{1}, x_{2}, \cdots, x_{n}$ belonging to extension fields of finite degree over K. If no such system satisfies the conditions (1), the same conclusion can be drawn. The same proof can be used.
${ }^{3}$ We do not use anything from the theory of ideals except the notation $\left(f_{1}, f_{2}, \cdots, f_{r}\right)$ for the set of all polynomials of the form $P_{1} f_{1}+P_{2} f_{2}+\cdots+P_{r} f_{r}$, $P_{3} \in K\left[x_{1}, x_{2}, \cdots, x_{n}\right]$, and facts which are immediate consequences.
${ }^{4}$ The numbers k, l, m do not depend on g.

