A NOTE ON HILBERT'S NULLSTELLENSATZ

RICHARD BRAUER

In a recent paper, O. Zariski¹ has given a very simple proof of Hilbert's "Nullstellensatz." We give here another proof which while slightly longer is still more elementary.

Let K be an algebraically closed field. We consider a system of conditions

(1)

$$f_1(x_1, x_2, \cdots, x_n) = 0, \qquad f_2(x_1, x_2, \cdots, x_n) = 0,$$

$$\cdots, f_r(x_1, x_2, \cdots, x_n) = 0;$$

$$g(x_1, x_2, \cdots, x_n) \neq 0$$

where f_1, f_2, \dots, f_r , and g are polynomials in n indeterminates x_1, x_2, \dots, x_n with coefficients in K. The theorem states that if the conditions (1) cannot be satisfied by any values x_i of K,² a suitable power of g belongs to the ideal (f_1, f_2, \dots, f_r) .³

PROOF. Let k be the number of x_i which actually appear in f_1, f_2, \dots, f_r and let x_i be the x_j of this kind with the smallest subscript. Denote by l the number of f_ρ in which x_i actually appears. Let m be the smallest positive value which occurs as degree in x_i of one of the f_{ρ} .⁴ Now define a partial order for the different systems (1) using a lexicographical arrangement. If (1*) is a second system of the same type as (1) and if k^* , l^* , and m^* have the corresponding significance, we shall say that (1*) is *lower* than (1) if either $k^* < k$, or $k^* = k$ and $l^* < l$, or $k^* = k$, $l^* = l$, and $m^* < m$.

Suppose now that Hilbert's theorem is false. Then there exist systems (1) which are not satisfied by any values x_j in K, and for which no power of g lies in (f_1, f_2, \dots, f_r) . Choose such a system (1) taking it as low as possible. Then for all systems (1*) lower than (1) the theorem will hold.

If k, l, m have the same significance as above, one of the f_{ρ} , say

Received by the editors November 1, 1947.

¹ Bull. Amer. Math. Soc. vol. 53 (1947) pp. 362-368.

² If we wish to formulate the theorem for arbitrary fields K as it is done in Zariski's paper, we have to consider a system of values x_1, x_2, \dots, x_n belonging to extension fields of finite degree over K. If no such system satisfies the conditions (1), the same conclusion can be drawn. The same proof can be used.

³ We do not use anything from the theory of ideals except the notation (f_1, f_2, \dots, f_r) for the set of all polynomials of the form $P_1f_1+P_2f_2+\dots+P_rf_r$, $P_1 \in K[x_1, x_2, \dots, x_n]$, and facts which are immediate consequences.

⁴ The numbers k, l, m do not depend on g.