NOTE ON A PROBLEM IN NUMBER THEORY

HAROLD N. SHAPIRO

The problem which we shall consider originated from a conjecture of S. Ulam. For x, p, integers, p a prime, let $x \equiv a(\bmod p)$ where $-p / 2<a<p / 2$; and define $\|x\|_{p}=|a|$. Then if $T(x)$ is a mapping of the nonzero residues modulo p into themselves, we consider the following "approximate multiplicative relation" modulo p,

$$
\begin{equation*}
\|T(x y)-T(x) T(y)\|_{p}<k \tag{1}
\end{equation*}
$$

where k is a fixed integer. The problem is to ascertain simple conditions under which the only solutions to (1) are given by

$$
\begin{equation*}
T(x) \equiv x^{a}(\bmod p) \tag{2}
\end{equation*}
$$

Clearly, p must be larger than k in order that this be feasible. Also, if we give to $T(x)$ any arbitrary set of integral values between 0 and $k^{1 / 2}$ we may obtain mappings satisfying (1) but not (2). This then indicates in a sense that the value domain of $T(x)$ must not be too small in order that (2) follow from (1).

The results obtained in this note are derived essentially from the following very simple lemma.

Lemma. If for $T(x)$ a mapping of a semigroup G into a ring R we define

$$
\begin{equation*}
\epsilon(x, y)=T(x y)-T(x) T(y) \tag{3}
\end{equation*}
$$

then for any x, y, z of G,

$$
\begin{equation*}
\epsilon(x, y) T(z)+\epsilon(x y, z)=T(x) \epsilon(y, z)+\epsilon(x, y z) . \tag{4}
\end{equation*}
$$

Proof. For any x, y, z of G we obtain from the associativity of multiplication:

$$
\begin{align*}
T(x y z) & =T(x y) T(z)+\epsilon(x y, z) \tag{5}\\
& =T(x) T(y) T(z)+\epsilon(x, y) T(z)+\epsilon(x y, z)
\end{align*}
$$

and

$$
\begin{align*}
T(x y z) & =T(x) T(y z)+\epsilon(x, y z) \\
& =T(x) T(y) T(z)+T(x) \epsilon(y, z)+\epsilon(x, y z) \tag{6}
\end{align*}
$$

Comparing (5) and (6) yields (4).
Received by the editors October 30, 1947, and, in revised form, November 10, 1947.

