
ON THE DIFFERENCE OF CONSECUTIVE PRIMES 

P. ERDÖS 

The present paper contains some elementary results on the differ­
ence of consecutive primes. Theorem 2 has been announced in a 
previous paper.1 Also some unsolved problems are stated. 

Let pi = 2, ^2 = 3, • • • , pk, • • • be the sequence of consecutive 
primes. Put dk=pk+i — pk. We have: 

THEOREM 1. There exist positive real numbers c\ and c2, £ i < l , c2<\, 
such that for every n the number of k's satisfying both 

(1) dk+i > (1 + ci)dk, k S n, 

and the number of I's satisfying both 

(2) di+i < (1 - a)di, l S », 

are each greater than c2n. 

We shall prove Theorem 1 later. From Theorem 1 we easily deduce : 

THEOREM 2. For every t and all sufficiently large n the number of solu­
tions in k and I of each of the two sets of inequalities 

(3) ( J > pk, k ^ w; ( J < pu le n, 

is greater than (c2/2)n. 

Let e be sufficiently small but fixed. I t is well known that pn<2-n 
log n. Thus the number of k^.nf with pk+i>(l + e)pk, is less than 

c log n. Hence it follows from Theorem 1 that the number of k's 
satisfying 

(4) pk+1 < (1 + e)pk, dk > (1 + ci)dk-i, k ^ n, 

is greater than (c2/2)n. A simple calculation now shows that the 
primes satisfying (4) also satisfy the first inequality of (3) iÎ€ = e(ci) is 
chosen small enough. The second inequality of (3) is proved in the 
same way, which proves Theorem 2. 

Further, we obtain, as an immediate corollary of Theorem 1, that2 
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