ON AN INEQUALITY OF P. TURÁN CONCERNING LEGENDRE POLYNOMIALS

G. SZEGÖ

The following remarkable inequality is due to the Hungarian mathematician P. Turán: If $P_n(x)$ denotes as usual Legendre's polynomial of the nth degree, we have

(1)
$$\Delta_n(x) = (P_n(x))^2 - P_{n-1}(x)P_{n+1}(x) \ge 0, \quad n \ge 1; -1 \le x \le 1,$$

with equality only for $x = \pm 1$. The purpose of this note is to give several proofs for this theorem different from that of Turán.¹

1. **Proof.** The following arrangement is somewhat similar to that of Turán. By using the classical recursion

(2)
$$P_{n+1}(x) = \frac{2n+1}{n+1} x P_n(x) - \frac{n}{n+1} P_{n-1}(x)$$

we find for the polynomial $\Delta_n(x)$ the representation

(3)
$$P_n^2 + \frac{n}{n+1} P_{n-1}^2 - \frac{2n+1}{n+1} x P_n P_{n-1}.$$

This is a quadratic form in P_n and P_{n-1} which is positive provided

(4)
$$\frac{n}{n+1} > \left(\frac{n+1/2}{n+1} x\right)^2$$
, or $|x| < \frac{(n(n+1))^{1/2}}{n+1/2} = \cos \theta_0$.

For these x the theorem is already proved. For the remaining $x = \cos \theta$, that is, for $0 < \theta \le \theta_0$, we use Mehler's formula

(5)
$$P_n(\cos \theta) = \frac{2}{\pi} \int_0^{\theta} \frac{\cos (n+1/2)u}{(2(\cos u - \cos \theta))^{1/2}} du$$

and obtain

$$\Delta_{n}(\cos\theta) = \pi^{-2} \int_{0}^{\theta} \int_{0}^{\theta} (\cos u - \cos \theta)^{-1/2} (\cos v - \cos \theta)^{-1/2}$$

$$(6) \cdot \{2\cos(n+1/2)u\cos(n+1/2)v - \cos(n-1/2)u\cos(n+3/2)v - \cos(n-1/2)v\cos(n+3/2)u\} dudv.$$

Presented to the Society, November 30, 1946; received by the editors July 11, 1947.

¹ I owe Mr. Turán also some other remarkable properties of the polynomial $\Delta_n(x)$.