ON AN INEQUALITY OF P. TURÅN CONCERNING LEGENDRE POLYNOMIALS

G. SZEGÖ

The following remarkable inequality is due to the Hungarian mathematician P. Turán: If $P_{n}(x)$ denotes as usual Legendre's polynomial of the nth degree, we have
(1) $\Delta_{n}(x)=\left(P_{n}(x)\right)^{2}-P_{n-1}(x) P_{n+1}(x) \geqq 0, \quad n \geqq 1 ;-1 \leqq x \leqq 1$, with equality only for $x= \pm 1$.The purpose of this note is to give several proofs for this theorem different from that of Turán. ${ }^{1}$

1. Proof. The following arrangement is somewhat similar to that of Turán. By using the classical recursion

$$
\begin{equation*}
P_{n+1}(x)=\frac{2 n+1}{n+1} x P_{n}(x)-\frac{n}{n+1} P_{n-1}(x) \tag{2}
\end{equation*}
$$

we find for the polynomial $\Delta_{n}(x)$ the representation

$$
\begin{equation*}
P_{n}^{2}+\frac{n}{n+1} P_{n-1}^{2}-\frac{2 n+1}{n+1} x P_{n} P_{n-1} \tag{3}
\end{equation*}
$$

This is a quadratic form in P_{n} and P_{n-1} which is positive provided

$$
\begin{equation*}
\frac{n}{n+1}>\left(\frac{n+1 / 2}{n+1} x\right)^{2}, \quad \text { or } \quad|x|<\frac{(n(n+1))^{1 / 2}}{n+1 / 2}=\cos \theta_{0} \tag{4}
\end{equation*}
$$

For these x the theorem is already proved. For the remaining $x=\cos \theta$, that is, for $0<\theta \leqq \theta_{0}$, we use Mehler's formula

$$
\begin{equation*}
P_{n}(\cos \theta)=\frac{2}{\pi} \int_{0}^{\theta} \frac{\cos (n+1 / 2) u}{(2(\cos u-\cos \theta))^{1 / 2}} d u \tag{5}
\end{equation*}
$$

and obtain

$$
\begin{align*}
& \Delta_{n}(\cos \theta)=\pi^{-2} \int_{0}^{\theta} \int_{0}^{\theta}(\cos u-\cos \theta)^{-1 / 2}(\cos v-\cos \theta)^{-1 / 2} \\
& \cdot\{2 \cos (n+1 / 2) u \cos (n+1 / 2) v-\cos (n-1 / 2) u \cos (n+3 / 2) v \tag{6}\\
& -\cos (n-1 / 2) v \cos (n+3 / 2) u\} d u d v
\end{align*}
$$

[^0]
[^0]: Presented to the Society, November 30, 1946; received by the editors July 11, 1947.
 ${ }^{1}$ I owe Mr. Turán also some other remarkable properties of the polynomial $\Delta_{n}(x)$.

