NOTE ON AFFINELY CONNECTED MANIFOLDS

SHIING-SHEN CHERN

The aim of this note is to prove some statements concerning the differential geometry in the large of an affinely connected manifold.

Let M be an orientable differentiable manifold of dimension n and class two. We say that an affine connection is defined in M, if a set of quantities¹ Γ_{ij}^{k} is defined in each allowable coordinate system x^{i} such that under change of the allowable coordinate system they are transformed according to the following law:

(1)
$$\overline{\Gamma}_{pq}^{r} = \frac{\partial^{2} x^{k}}{\partial \bar{x}^{p} \partial \bar{x}^{q}} \frac{\partial \bar{x}^{r}}{\partial x^{k}} + \Gamma_{ij}^{k} \frac{\partial x^{i}}{\partial \bar{x}^{p}} \frac{\partial x^{j}}{\partial \bar{x}^{q}} \frac{\partial \bar{x}^{r}}{\partial x^{k}} \cdot$$

The connection may be symmetric or asymmetric.

It is well known that from Γ_{ij}^{k} the covariant derivative of a contravariant vector X^{i} can be defined as follows:

(2)
$$X^{i}_{,k} = \frac{\partial X^{i}}{\partial x^{k}} + X^{l} \Gamma^{i}_{lk}.$$

We also recall that the affine curvature tensor is given by

(3)
$$R_{jkl}^{i} = \frac{\partial \Gamma_{jl}^{i}}{\partial x^{k}} - \frac{\partial \Gamma_{jk}^{i}}{\partial x^{l}} - \Gamma_{ml}^{i} \Gamma_{jk}^{m} + \Gamma_{mk}^{i} \Gamma_{jl}^{m}.$$

We put

and introduce the exterior differential form

$$(5) P = R_{kl} dx^k dx^l.$$

Then the main theorem of this note can be stated as follows:

THEOREM. The integral of P over any two-dimensional cycle is equal to zero.

To prove this theorem we consider *n* linearly independent contravariant vectors $X_{(1)}^{i}, \dots, X_{(n)}^{i}$ and their determinant

Received by the editors February 8, 1947.

¹ All indices in this paper run from 1 to n and we agree as usual that repeated indices mean summation.