TERNARY BOOLEAN ALGEBRA

A. A. GRAU

1. Introduction. The present paper ${ }^{1}$ is concerned with a ternary operation in Boolean algebra. We assume a degree of familiarity with the latter $[1,2],{ }^{2}$ and by the former we shall mean simply a function of three variables defined for elements of a set K whose values are also in K. Ternary operations have been discussed in groupoids [4] and groups [3]; in Boolean algebra an operation different from the one introduced here was discussed by Whiteman [5].

By a simple set of postulates (§2), we define a ternary system, which we call a ternary Boolean algebra, from which Boolean algebras are obtained by specialization of the ternary operation, and which itself may be considered as a more general binary system with as many binary operations as elements, each having the properties of the Boolean operations (§4). The ternary Boolean algebra is homogeneous and there is a one-to-one correspondence between distinct ternary algebras and abstract Boolean algebras (§5, §7); thus the ternary algebra provides a new postulational approach to Boolean algebra. The ternary operation has a unique realization in Boolean algebra (§6). Other applications of ternary operations and the matter of a valid representation for ternary Boolean algebra are left to a subsequent paper.
2. Postulates for ternary Boolean algebra. Let K be a system consisting of a set of elements a, b, \cdots, and two operations under which the system is closed, one ternary, $a^{b} c$, and the other unitary a^{\prime}. These satisfy the following relations for all a, b, c, d, and e :

$$
\begin{align*}
a^{b}\left(c^{d} e\right) & =\left(a^{b} c\right)^{d}\left(a^{b} e\right), \tag{2.1}\\
a^{b} b & =b^{b} a=b, \tag{2.2}\\
a^{b} b^{\prime} & =b^{b} a=a \tag{2.3}
\end{align*}
$$

The system thus defined we shall call a ternary Boolean algebra.
It is easily verified that the following function in Boolean algebra satisfies the postulates:

[^0]
[^0]: Received by the editors October 28, 1946,
 ${ }^{1}$ This paper is a portion of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the University of Michigan, May 1944.
 ${ }^{2}$ Numbers in brackets refer to the bibliography at the end of the paper.

