THE NON-EXISTENCE OF A CERTAIN TYPE OF ODD PERFECT NUMBER

R. J. LEVIT

For any perfect number ${ }^{1}$ expressed in the form $n=a_{0} a_{1} \cdots a_{t}$, where

$$
a_{0}=p_{0}^{\alpha_{0}}, a_{1}=p_{1}^{\alpha_{1}}, \cdots, a_{t}=p_{t}^{\alpha_{t}}
$$

and $p_{0}, p_{1}, \cdots, p_{t}$ are the distinct prime factors of n, it can be shown that a unique one of the prime powers a_{i} has an even divisor sum $\sigma\left(a_{i}\right)$. Throughout we shall suppose that the primes p_{i} and hence the prime powers a_{i} to be so numbered that

$$
\begin{equation*}
\sigma\left(a_{0}\right) \equiv 0 ; \quad \sigma\left(a_{i}\right) \equiv 1 \quad i=1,2, \cdots, t,(\bmod 2) \tag{1}
\end{equation*}
$$

Then with the abbreviations

$$
\begin{equation*}
\sigma_{0}=\sigma\left(a_{0}\right) / 2 ; \quad \sigma_{i}=\sigma\left(a_{i}\right), \quad i=1,2, \cdots, t, \tag{2}
\end{equation*}
$$

the condition for n to be perfect may be written in the form

$$
\begin{equation*}
\sigma(n) / 2=\sigma_{0} \sigma_{1} \cdots \sigma_{t}=a_{0} a_{1} \cdots a_{t}=n \tag{3}
\end{equation*}
$$

For the even perfect numbers, which are the only kind known, it is well known that $p_{0}=2^{q}-1, \alpha_{0}=1, p_{1}=2, \alpha_{1}=q-1, t=1$, where q is any prime such that $2^{q}-1$ is also prime. Then $\sigma_{1}=2^{q}-1=a_{0}$ and $\sigma_{0}=2^{q-1}=a_{1}$ so that σ_{0} and σ_{1} are the prime powers a_{0} and a_{1} in rereverse order. It is natural to inquire whether there may exist odd perfect numbers such that analogously $\sigma_{0}, \sigma_{1}, \cdots, \sigma_{t}$ are the prime powers $a_{0}, a_{1}, \cdots, a_{t}$ in a different order. In the following it will be proved that no odd perfect numbers of this form can exist.

We first establish an algebraic identity. Throughout this paper the product notation $\prod_{i=a}^{b} x_{i}$ is used with the convention that $\prod_{i=a}^{b} x_{i}=1$ if $a>b$.

Lemma 1. Let $c_{1}, c_{2}, \cdots, c_{t}$ be any $t \geqq 2$ integers (more generally, elements of a commutative ring with a unit element). Then,

[^0]
[^0]: Presented to the Society, February 22, 1947 ; received by the editors September 16, 1946.
 ${ }^{1}$ For a summary of results concerning perfect numbers (including those cited above) with references see L. Dickson, History of the theory of numbers, vol. 1, 1919, pp. 1-33. For a more recent paper with references to other recent literature on the subject, see A. Brauer, On the non-existence of odd perfect numbers of form $p^{\alpha} q_{1}^{2} q_{2}^{2} \ldots$ $q_{t-1}^{2} q_{t}^{4}$, Bull. Amer. Math. Soc. vol. 49 (1943) pp. 712-718.

