A NOTE ON THE INTERRELATION OF SUBSETS OF INDEPENDENT VARIABLES OF A CONTINUOUS FUNCTION WITH CONTINUOUS FIRST DERIVATIVES¹

WASSILY LEONTIEF

Let X be a set of *n* variables x_1, x_2, \dots, x_n and y a continuous function of these variables, $y = f(x_1, x_2, \dots, x_n)$, also written as f(X) with continuous partial derivatives of the first, second, and third orders. Throughout the following discussion all the first partial derivatives of $f(x_1, x_2, \dots, x_n)$ are assumed to be different from zero.

Let S be a proper subset of X and S' the subset which is complementary to S in X.

DEFINITION I. A subset S of independent variables is locally functionally separable at a point (a_1, a_2, \dots, a_n) within the set X in y=f(X) if there exist some function ϕ with continuous first derivatives and defined in some neighborhood of (a_1, a_2, \dots, a_n) and another function ψ also with continuous first derivatives and defined in some neighborhood of $(b, a_{n+1}, a_{n+2}, \dots, a_n)$ where $b = \phi(a_1, a_2, \dots, a_n)$ such that

(1)
$$y = f(X) = \psi(\phi(S), S').$$

The function $\phi(S)$ is locally separable in f(X).

From the definition of a locally separable subset it follows that each of the original variables, that is, each of the elements of X, is a locally separable subset of X in f(X); so is also the set X itself.

Let $_{ij}R$ be defined by

$$_{ij}R = f'_i / f'_j$$

where f'_i and f'_j are the partial derivatives of $f(x_1, x_2, \dots, x_n)$ with respect to x_i and x_j . The necessary and sufficient condition for $_{ij}R$ to be independent of x_k is

$$_{ij}R_{k}' = \frac{f_{ik}'f_{j}' - f_{jk}'f_{i}'}{[f_{j}']^{2}} = 0$$

Received by the editors June 11, 1946, and, in revised form, October 9, 1946.

¹ The subject of this note suggested itself by a study of "production functions" and "consumption functions" in mathematical economics.

The problem considered in this paper bears some relation to the XIIIth problem of Hilbert: D. Hilbert, Nach. Ges. Wiss. Göttingen (1900) p. 280; cf. also Pólya and Szegö, Aufgaben und Lehrsätze aus der Analysis, vol. I, problems 119 and 119a, pp. 61-62 and 220-222.