SOME REMARKS ON THE THEORY OF GRAPHS

P. ERDÖS

The present note consists of some remarks on graphs. A graph G is a set of points some of which are connected by edges. We assume here that no two points are connected by more than one edge. The complementary graph G^{\prime} of G has the same vertices as G and two points are connected in G^{\prime} if and only if they are not connected in G.

A special case of a theorem of Ramsey can be stated in graph theoretic language as follows:

There exists a function $f(k, l)$ of positive integers k, l with the following property. Let there be given a graph G of $n \geqq f(k, l)$ vertices. Then either G contains a complete graph of order k, or G^{\prime} a complete graph of order l. (A complete graph is a graph any two vertices of which are connected. The order of a complete graph is the number of its vertices.)

It would be desirable to have a formula for $f(k, l)$. This at present we can not do. We have however the following estimates:

Theorem I. Let $k \geqq 3$. Then

$$
2^{k / 2}<f(k, k) \leqq C_{2 k-2, k-1}<4^{k-1}
$$

The second inequality of Theorem I was proved by Szekeres, ${ }^{1}$ thus we only consider the first one. Let $N \leqq 2^{k / 2}$. Clearly the number of different graphs of N vertices equals $2^{N(N-1) / 2}$. (We consider the vertices of the graph as distinguishable.) The number of different graphs containing a given complete graph of order k is clearly $2^{N(N-1) / 2} / 2^{k(k-1) / 2}$. Thus the number of graphs of $N \leqq 2^{k / 2}$ vertices containing a complete graph of order k is less than

$$
\begin{equation*}
C_{N, k} \frac{2^{N(N-1) / 2}}{2^{k(k-1) / 2}}<\frac{N^{k}}{k!} \frac{2^{N(N-1) / 2}}{2^{k(k-1) / 2}}<\frac{2^{N(N-1) / 2}}{2} \tag{1}
\end{equation*}
$$

since by a simple calculation for $N \leqq 2^{k / 2}$ and $k \geqq 3$

$$
2 N^{k}<k!2^{k(k-1) / 2} .
$$

But it follows immediately from (1) that there exists a graph such that neither it nor its complementary graph contains a complete subgraph of order k, which completes the proof of Theorem I.

The following formulation of Theorem I might be of some interest:

[^0]
[^0]: Received by the editors April 30, 1946, and, in revised form, October 20, 1946.
 ${ }^{1}$ P. Erdös and G. Szekeres, Compositio Math. vol. 2 (1935) pp. 463-470.

