OPEN TRANSFORMATIONS AND DIMENSION ${ }^{1}$

J. H. ROBERTS

This paper considers separable metric spaces A and B and open transformations. If, for each $x \in A, f(x) \in B$ and the image under f of every open set in A is a set open in B, then f is an open transformation. Continuity of f is not assumed. Such transformations have been studied by Rhoda Manning [1]. ${ }^{2}$

Theorem 1. If $f(A)=B$ where f is open, then there exists a subset A_{1} of A such that (1) $f\left(A_{1}\right)=B$, (2) for $y \in B$, the set $f^{-1}(y) \cdot A_{1}$ is countable, and (3) f, considered as a transformation of A_{1} into B, is open.

Proof. Let K_{1}, K_{2}, \cdots denote the elements of a countable base (open sets) for the space A. For every $y \in B$ and each i let $P_{y i}$ be a point of $K_{i} \cdot f^{-1}(y)$, provided this set is nonvacuous. Let A_{1} be the set of all points $P_{y i}$ so obtained. Properties (1) and (2) are obvious. To prove (3), let V be an open set in A_{1}, and U an open set in A such that $U \cdot A_{1}=V$. Now for every y the set $f^{-1}(y) \cdot A_{1}$ is dense in $f^{-1}(y)$. Hence if $f^{-1}(y)$ has a point in U then it has a point in $A_{1} \cdot U$ so $f(V)=f(U)$ is an open set in B.

Theorem 2. There exist countable-fold open mappings ${ }^{3}$ which increase dimension.

Proof. There exist open mappings which increase dimension [2]. Theorem 2 follows by applying Theorem 1 to any such example. ${ }^{4}$

Theorem 3. If $\operatorname{dim} A=n$ and $-1<m \leqq n$, then there exists a B and a transformation f such that (1) $f(A)=B$, (2) f is open and 1-1, and (3) $\operatorname{dim} B=m$. In other words, dimension can be lowered at will by a 1-1 open transformation. ${ }^{5}$

[^0]
[^0]: Presented to the Society, April 27, 1946; received by the editors October 14, 1946.
 ${ }^{1}$ One statement in the abstract (Bull. Amer. Math. Soc. Abstract 59-5-210) is incorrect. Theorem 4 gives the correct statement.
 ${ }^{2}$ Numbers in brackets refer to the bibliography.
 ${ }^{3} \mathrm{~A}$ mapping is a continuous transformation.
 ${ }^{4}$ Alexandroff [5] has proved that if A is compact then no countable-fold open mapping can increase dimension.
 ${ }^{5}$ Compare the following special case of a theorem of Hurewicz [4, p. 91, Theorem VI 7]): "If f is a closed mapping of A into B and for each $y \in B, f^{-1}(y)$ is zero-dimensional, then $\operatorname{dim} B \geqq \operatorname{dim} A$." In a footnote (loc. cit.) the authors state that it is not known if Theorem VI 7 is true for open mappings. The answer is in the negative and their example VI 10 is a counter example, as the mapping f is actually open.

