OPEN TRANSFORMATIONS AND DIMENSION¹

J. H. ROBERTS

This paper considers separable metric spaces A and B and open transformations. If, for each $x \in A$, $f(x) \in B$ and the image under f of every open set in A is a set open in B, then f is an *open* transformation. Continuity of f is not assumed. Such transformations have been studied by Rhoda Manning [1].²

THEOREM 1. If f(A) = B where f is open, then there exists a subset A_1 of A such that (1) $f(A_1) = B$, (2) for $y \in B$, the set $f^{-1}(y) \cdot A_1$ is countable, and (3) f, considered as a transformation of A_1 into B, is open.

PROOF. Let K_1, K_2, \cdots denote the elements of a countable base (open sets) for the space A. For every $y \in B$ and each i let P_{yi} be a point of $K_i \cdot f^{-1}(y)$, provided this set is nonvacuous. Let A_1 be the set of all points P_{yi} so obtained. Properties (1) and (2) are obvious. To prove (3), let V be an open set in A_1 , and U an open set in A such that $U \cdot A_1 = V$. Now for every y the set $f^{-1}(y) \cdot A_1$ is dense in $f^{-1}(y)$. Hence if $f^{-1}(y)$ has a point in U then it has a point in $A_1 \cdot U$ so f(V) = f(U)is an open set in B.

THEOREM 2. There exist countable-fold open mappings³ which increase dimension.

PROOF. There exist open mappings which increase dimension [2]. Theorem 2 follows by applying Theorem 1 to any such example.⁴

THEOREM 3. If dim A = n and $-1 < m \le n$, then there exists a B and a transformation f such that (1) f(A) = B, (2) f is open and 1-1, and (3) dim B = m. In other words, dimension can be lowered at will by a 1-1 open transformation.⁵

Presented to the Society, April 27, 1946; received by the editors October 14, 1946. ¹ One statement in the abstract (Bull. Amer. Math. Soc. Abstract 59-5-210) is incorrect. Theorem 4 gives the correct statement.

² Numbers in brackets refer to the bibliography.

³ A mapping is a continuous transformation.

⁴ Alexandroff [5] has proved that if A is *compact* then no countable-fold open mapping can increase dimension.

⁵ Compare the following special case of a theorem of Hurewicz [4, p. 91, Theorem VI 7]): "If f is a closed mapping of A into B and for each $y \in B$, $f^{-1}(y)$ is zero-dimensional, then dim $B \ge \dim A$." In a footnote (loc. cit.) the authors state that it is not known if Theorem VI 7 is true for *open* mappings. The answer is in the negative and their example VI 10 is a counter example, as the mapping f is actually open.