## References

1. P. Erdös and M. Kac, On certain limit theorems of the theory of probability. Bull. Amer. Math. Soc. vol. 52 (1946) pp. 292-302.
2. A. Wald, On cumulative sums of random variables, Ann. Math. Statist. vol. 15 (1944).
3.     - Sequential tests of statistical hypotheses, Ann. Math. Statist. vol. 16 (1945).
4. M. Kac, Random walk in the presence of absorbing barriers, Ann. Math. Statist. vol. 16 (1945).

Columbia University

## NOTE ON THE ZEROS OF $P_{n}^{m}(\cos \theta)$ AND $d P_{n}^{m}(\cos \theta) / d \theta$ CONSIDERED AS FUNCTIONS OF $n$

## C. W. HORTON

In many physical problems in which the boundary conditions are specified over the surface of a cone, it is necessary to know the roots of the equations

$$
\begin{equation*}
P_{n}^{m}(\cos \theta)=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
d P_{n}^{m}(\cos \theta) / d \theta=0 \tag{2}
\end{equation*}
$$

considered as functions of $n$. This problem has been solved by Bholanath Pal. ${ }^{1}$ In these papers he develops infinite series for the roots $n$ which converge rapidly and are very suitable for numerical computation. In deriving his solution Pal introduced a parameter $k$ which takes on successive integer values and thereby yields successive roots of the equations.

It is the purpose of this note to point out that the value $k=1$ with which Pal commenced the series does not always give the first root of the equation, and sometimes it gives a number which is not a root of the equation. For example, in treating the equation $P_{n}^{2}(\cos \theta)=0$, Pal gives three roots: $n=4.77,2.26,1.52$, corresponding to values of $\theta$ equal to $15^{\circ}, 30^{\circ}, 45^{\circ}$, respectively. That these values are not roots
${ }^{1}$ Bull. Calcutta Math. Soc. vol. 9 (1917-1918) p. 85; vol. 10 (1918-1919) p. 187.

