1. P. Erdös and M. Kac, On certain limit theorems of the theory of probability. Bull. Amer. Math. Soc. vol. 52 (1946) pp. 292-302.

2. A. Wald, On cumulative sums of random variables, Ann. Math. Statist. vol. 15 (1944).

3. — , Sequential tests of statistical hypotheses, Ann. Math. Statist. vol. 16 (1945).

4. M. Kac, Random walk in the presence of absorbing barriers, Ann. Math. Statist. vol. 16 (1945).

COLUMBIA UNIVERSITY

NOTE ON THE ZEROS OF $P_n^m(\cos \theta)$ AND $dP_n^m(\cos \theta)/d\theta$ CONSIDERED AS FUNCTIONS OF n

C. W. HORTON

In many physical problems in which the boundary conditions are specified over the surface of a cone, it is necessary to know the roots of the equations

(1)
$$P_n^m(\cos\theta) = 0$$

and

(2)
$$dP_n^{m}(\cos\theta)/d\theta = 0$$

considered as functions of n. This problem has been solved by Bholanath Pal.¹ In these papers he develops infinite series for the roots n which converge rapidly and are very suitable for numerical computation. In deriving his solution Pal introduced a parameter kwhich takes on successive integer values and thereby yields successive roots of the equations.

It is the purpose of this note to point out that the value k=1 with which Pal commenced the series does not always give the first root of the equation, and sometimes it gives a number which is not a root of the equation. For example, in treating the equation $P_n^2(\cos \theta) = 0$, Pal gives three roots: n = 4.77, 2.26, 1.52, corresponding to values of θ equal to 15°, 30°, 45°, respectively. That these values are not roots

1947]

Received by the editors August 19, 1946.

¹ Bull. Calcutta Math. Soc. vol. 9 (1917-1918) p. 85; vol. 10 (1918-1919) p. 187.