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It has been shown by F. Marty [ô]2 that if ƒ(z) is analytic and uni­
valent in the unit circle,/(0) =0, and /'(O) = 1, and if the Bieberbach 
conjecture [2] that |ƒ<•>(<» | Sn-nl is assumed when n>3, then 

(1) | ƒ<»>(*) | S nl(» + r)(l - r)—», n - 0, 1, 2, 3, • • • , 

where | z| = r, and that equality is attained for real positive z by the 
function ƒ(z) ~z(\—z)~-2. For # = 0 and w = l the inequality reduces 
to the well known relations obtained by Pick in evaluating the con­
stant in the Verzerrungssatz of Koebe (see [2]). 

The purpose of this paper is to generalize this relation to include 
fractional derivatives and integrals. The bound obtained will be ex­
pressed in terms of the ratio of the incomplete to the complete beta 
function, defined for p and q real and one or the other positive by the 
equations 
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which are equivalent if both p and q are positive. Two separate defini­
tions of the fractional derivative will be found useful; these may be 
shown equivalent for the values for which both are defined. For a <0 
the Abel-Riemann definition [l, 9] is more easily applied: 
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oD,f(z) « oDM f(z), m — 1 ^ a < m, 
dzm 

where m is a positive integer. For a^O the Laurent definition [4] is 
more satisfactory: 
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