
NOTE ON ALMOST-ALGEBRAIC NUMBERS 

HARVEY COHN1 

1. Introduction. According to a theorem of J. Liouville,2 if 6 is 
an algebraic number of degree n, then any approximation by ra
t iona l , p/q, is of such a nature that 

(i) \e-p/q\zkr* 
for a positive constant k. Liouville constructed his transcendental 
numbers as the limit of special sequences of rationals, p/q, which 
violated condition (1) regardless of the values of k and n, as q—>oo. 
Thus Liouville constructed almost-rational numbers. 

E. Maillet3 likewise found a lower bound for 0—a where now 0 is 
approximated by the quadratic numbers, a. He then violated his 
lower bound by substituting for 0 the value of an almost periodic 
simple continued fraction and for a a quadratic number, namely a 
periodic simple continued fraction that 0 almost represented. Thus 
he constructed an almost-quadratic transcendental. 

I t is an elementary matter to find a lower bound for 0—a, where 
we now approximate 0 by an algebraic number not necessarily ra
tional or quadratic. We could then try several departures. We could, 
for example, try to construct almost-cubic or almost-biquadratic 
transcendentals.4 On the other hand, we could use a diagonal method, 
that is, we could consider the limit of a rapidly converging sequence 
of algebraic numbers whose degree becomes indefinite. For example, 
a root of a power series with rational coefficients is the limit of a se
quence of (algebraic) roots of the partial sums, and the speed of con
vergence is regulated by the remainder. If the remainder is too small 
we find that the root of our power series can be approximated too 
closely by algebraic numbers of varying degrees, namely the roots of 
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