A NOTE ON LINEAR HOMOGENEOUS DIOPHANTINE EQUATIONS

L. W. GRIFFITHS

In this paper the coefficients $a_{i j}$ in the equations

$$
\begin{equation*}
a_{i 1} x_{1}+\cdots+a_{i n} x_{n}=0 \quad(i=1, \cdots, m) \tag{1}
\end{equation*}
$$

are constant rational integers and all letters denote integers. If $m=n-1$ and the rank is $n-1$ then the complete solution in integers is well known. Thus, if E_{j} is the determinant obtained by deleting the j th column from the matrix of the coefficients, and if $e=\left(E_{1}, \cdots, E_{n}\right)$, then the solution is

$$
\begin{equation*}
x_{j}=(-1)^{j} t E_{j} / e \quad(j=1, \cdots, n) \tag{2}
\end{equation*}
$$

in which t is an arbitrary integer.
E. T. Bell recently conjectured that if $m<n-1$ and if the rank r is m then the solution is similarly obtained from the system formed by (1) and the equations

$$
\begin{equation*}
\xi_{i 1} x_{1}+\cdots+\xi_{i n} x_{n}=0 \quad(i=1, \cdots, n-m-1) \tag{3}
\end{equation*}
$$

in which the $\xi_{i j}$ are arbitrary integers. In this paper this conjecture is proved by induction. Since this solution is written down directly from (1) and is fully displayed these results are more usable than those in the literature. ${ }^{1}$

If $r=1$ it can be assumed without limitation that $a_{1} \cdots a_{n} \neq 0$, $\left(a_{1}, \cdots, a_{n}\right)=1$, and at least one of x_{1}, \cdots, x_{n} is not zero. If $n=3$ there are integers $t, y_{1}, y_{2}, y_{3}, d, A_{1}, A_{2}, k_{1}, k_{2}$ such that
(4) $x_{1}=t y_{1}$,
$x_{2}=t y_{2}$,
$x_{3}=t y_{3}$,
$\left(y_{1}, y_{2}, y_{3}\right)=1$,
(5) $a_{1}=d A_{1}, \quad a_{2}=d A_{2}, \quad\left(A_{1}, A_{2}\right)=1, \quad k_{1} A_{2}-k_{2} A_{1}=1$.

Since $\left(d, a_{3}\right)=1$ there is an integer s such that

$$
\begin{equation*}
y_{3}=d s, \quad A_{1} y_{1}+A_{2} y_{2}+a_{3} s=0 . \tag{6}
\end{equation*}
$$

Then since $\left(A_{1}, A_{2}\right)=1$ there is an integer r such that

$$
\begin{equation*}
y_{1}-a_{3} k_{2} s=A_{2} r, \quad y_{2}+a_{3} k_{1} s=-A_{1} r . \tag{7}
\end{equation*}
$$

These conditions are also sufficient. Hence the complete solution is

[^0]
[^0]: Presented to the Society, April 26, 1946; received by the editors March 18, 1946.
 ${ }^{1}$ Th. Skolem, Diophantische Gleichungen, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 5, no. 4, 1938; D. N. Lehmer, Proc. Nat. Acad. Sci. U.S.A. vol. 4 (1919).

