APPROXIMATE ISOMETRIES

D. G. BOURGIN

In a recent paper $[1]^1$ Hyers and Ulam formulated the problem of approximate isometries. Thus if E_1 and E_2 are metric spaces, a transformation T on E_1 to E_2 is an ϵ isometry if $|d_1(T(x), T(x')) - d(x, x')|$ $<\epsilon$, for all x, x' in E_1 . These authors analyzed the ϵ isometries defined on a complete abstract Euclidean space E and showed that if Tmaps E onto itself and $T(\theta) = \theta$, then there exists an isometry [2,p. 165], U, of E onto E such that $||T(x) - U(x)|| < 10\epsilon$. The analysis depends on the properties of the scalar product. In the present work we show, first, that similar results hold when $E_1 = E_2 = L_r(0, 1)$, $1 < r < \infty$, though, except of course for r = 2, a scalar product no longer exists. It is shown further that it is sufficient that E_2 belong to a restricted class of uniformly convex Banach spaces and that E_1 be a Banach space.

THEOREM 1. Let T(x) be an ϵ isometry of $L_r(0, 1)$, $1 < r < \infty$, into itself with $T(\theta) = \theta$. Then $U(x) = L_{n \to \infty} T(2^n x)/2^n$ exists for each x and U(x) is an isometric, linear transformation.

Our fundamental assumption is that

$$(1.01) \qquad \left| \left\| T(x) - T(x') \right\| - \left\| x - x' \right\| \right| < \epsilon, \qquad T(\theta) = \theta.$$

The following inequality is due to Clarkson [3, 4],

(1.02)
$$\|\alpha + \beta\|^{p} + \|\alpha - \beta\|^{p} \leq 2(\|\alpha\|^{q} + \|\beta\|^{q})^{p-1},$$

where here and later we understand that

$$p = \sup (r/(r-1)) \ge 2 \ge q = \inf (r, r/(r-1)).$$

Let

$$2\alpha = T(x), 2\beta = T(x) - T(2x).$$

Then

$$||T(x) - T(2x)/2||^{p}$$
(1.03)
$$\leq 2^{1-q(p-1)} (||T(x)||^{q} + ||T(x) - T(2x)||^{q})^{p-1} - ||T(2x)/2||^{p}$$

$$\leq (||x|| + \epsilon)^{p} - (||x|| - \epsilon/2)^{p}.$$

If $||x|| \leq \epsilon$ then the right-hand side of equation (1.03) is surely in-

Presented to the Society April 27, 1946; received by the editors January 26, 1946. ¹ Numbers in brackets refer to the Bibliography.

[.]