APPROXIMATE ISOMETRIES

D. G. BOURGIN

In a recent paper [1] ${ }^{1}$ Hyers and Ulam formulated the problem of approximate isometries. Thus if E_{1} and E_{2} are metric spaces, a transformation T on E_{1} to E_{2} is an ϵ isometry if $\left|d_{1}\left(T(x), T\left(x^{\prime}\right)\right)-d\left(x, x^{\prime}\right)\right|$ $<\epsilon$, for all x, x^{\prime} in E_{1}. These authors analyzed the ϵ isometries defined on a complete abstract Euclidean space E and showed that if T maps E onto itself and $T(\theta)=\theta$, then there exists an isometry [2, p. 165], U, of E onto E such that $\|T(x)-U(x)\|<10 \epsilon$. The analysis depends on the properties of the scalar product. In the present work we show, first, that similar results hold when $E_{1}=E_{2}=L_{r}(0,1)$, $1<r<\infty$, though, except of course for $r=2$, a scalar product no longer exists. It is shown further that it is sufficient that E_{2} belong to a restricted class of uniformly convex Banach spaces and that E_{1} be a Banach space.

Theorem 1. Let $T(x)$ be an ϵ isometry of $L_{r}(0,1), 1<r<\infty$, into itself with $T(\theta)=\theta$. Then $U(x)=L_{n \rightarrow \infty} T\left(2^{n} x\right) / 2^{n}$ exists for each x and $U(x)$ is an isometric, linear transformation.

Our fundamental assumption is that

$$
\begin{equation*}
\left|\left\|T(x)-T\left(x^{\prime}\right)\right\|-\left\|x-x^{\prime}\right\|\right|<\epsilon, \quad T(\theta)=\theta \tag{1.01}
\end{equation*}
$$

The following inequality is due to Clarkson [3, 4],

$$
\begin{equation*}
\|\alpha+\beta\|^{p}+\|\alpha-\beta\|^{p} \leqq 2\left(\|\alpha\|^{q}+\|\beta\|^{q}\right)^{p-1} \tag{1.02}
\end{equation*}
$$

where here and later we understand that

$$
p=\sup (r /(r-1)) \geqq 2 \geqq q=\inf (r, r /(r-1))
$$

Let

$$
2 \alpha=T(x), 2 \beta=T(x)-T(2 x)
$$

Then

$$
\|T(x)-T(2 x) / 2\|^{p}
$$

$$
\begin{align*}
& \leqq 2^{1-q(p-1)}\left(\|T(x)\|^{q}+\|T(x)-T(2 x)\|^{q}\right)^{p-1}-\|T(2 x) / 2\|^{p} \tag{1.03}\\
& \leqq(\|x\|+\epsilon)^{p}-(\|x\|-\epsilon / 2)^{p} .
\end{align*}
$$

If $\|x\| \leqq \epsilon$ then the right-hand side of equation (1.03) is surely in-

[^0]
[^0]: Presented to the Society April 27, 1946; received by the editors January 26, 1946.
 ${ }^{1}$ Numbers in brackets refer to the Bibliography.

