RECIPROCALS OF J-MATRICES

H. S. WALL

1. Introduction. We consider J-matrices

$$
\begin{aligned}
J=\left(i_{p q}\right), \quad j_{p q} & =0 \quad \text { for } \quad|p-q| \geqq 2, \quad j_{p p}=b_{p}, \\
j_{p+1, p} & =j_{p, p+1}=-a_{p} \neq 0,
\end{aligned}
$$

such that
(1.1) $I[J(x, \bar{x})]=\sum I\left(b_{p}\right)\left|x_{p}\right|^{2}-\sum I\left(a_{p}\right)\left(x_{p} \bar{x}_{p+1}+\bar{x}_{p} x_{p+1}\right) \geqq 0$
for all x_{p} for which the sums converge. These are the J-matrices associated with a positive definite J-fraction $[4,5,1] .{ }^{1}$ Let $X_{p}(z)$ and $Y_{p}(z)$ denote the solutions of the system of linear equations
(1.2) $-a_{p-1} x_{p-1}+\left(b_{p}+z\right) x_{p}-a_{p} x_{p+1}=0, p=1,2,3, \cdots ; a_{0}=1$,
under the initial conditions $x_{0}=-1, x_{1}=0$ and $x_{0}=0, x_{1}=1$, respectively. We shall prove that when at least one of the series

$$
\begin{equation*}
\sum_{p=1}^{\infty}\left|X_{p}(0)\right|^{2}, \quad \sum_{p=1}^{\infty}\left|Y_{p}(0)\right|^{2} \tag{1.3}
\end{equation*}
$$

diverges, then the matrix $J+z I$ has a unique bounded reciprocal for $I(z)>0$, and that when both the series (1.3) converge then the matrix $J+z I$ has infinitely many different bounded reciprocals. This theorem was proved by Hellinger [2] for the case where the coefficients a_{p} and b_{p} are all real.
2. Reciprocals of an arbitrary J-matrix. The general right reciprocal of $J+z I$ is ($\rho_{p q}$) where $\rho_{1, q}, q=1,2,3, \cdots$, are arbitrary functions of z, and [3, p. 116]

$$
\rho_{p q}(z)=\left\{\begin{array}{l}
\rho_{1, q}(z) Y_{p}(z), \quad \begin{array}{l}
p=1,2,3, \cdots, q ; \\
\rho_{1, q}(z) Y_{p}(z)+X_{q}(z) Y_{p}(z)-X_{p}(z) Y_{q}(z) \\
p=q+1, q+2, q+3, \cdots
\end{array} . \tag{2.1}
\end{array}\right.
$$

We shall say that the determinate case or the indeterminate case holds for the J-matrix according as at least one of the series (1.3) diverges or both of these series converge, respectively. In the indeterminate case, both of the series
${ }^{1}$ Numbers in brackets refer to the Bibliography at the end of the paper.

