THE ASANO POSTULATES FOR THE INTEGRAL DOMAINS OF A LINEAR ALGEBRA

FRED KIOKEMEISTER

1. Introduction. The multiplicative ideal theory for a noncommutative ring A as developed by Asano¹ postulates the existence in A of a maximal bounded order R which satisfies the maximal chain condition for two-sided R-ideals contained in R and the minimal chain condition for one-sided R-ideals in R containing any fixed two-sided R-ideal. Let A be a separable algebra over the field P, and let P be the quotient field of the domain of integrity g. It has been shown [2, pp. 123-126] that if g has a Noether ideal theory, then a maximal domain of g-integers exists in A and satisfies the conditions of the Asano theory. It is the purpose of this paper to prove that the condition of separability can be removed from A and that it need only be postulated that A shall have an identity.

2. Subgroups of direct sums. Let G be a commutative group with operator domain Ω . Let G be the direct sum of the Ω -subgroups G_1, G_2, \dots, G_n . We shall write $G = G_1 + G_2 + \dots + G_n$. The direct summand G_i gives rise to a projection α_i which is an endomorphism of G on G_i : if $g = g_1 + g_2 + \dots + g_n$, $g_i \in G_i$, then $\alpha_i g = g_i$. The sum $\alpha_1 + \alpha_2 + \dots + \alpha_n$ is the identity operator I. Furthermore the sum of any subset of the projections $\alpha_1, \alpha_2, \dots, \alpha_n$ is a projection. We shall label in particular the operators $\delta_i = \sum_{j=1}^i \alpha_j$. Then $\delta_1 = \alpha_1$, and $\delta_n = I$. In general $\delta_{i+1} = \delta_i + \alpha_{i+1}$. If $\omega \in \Omega$, then $\omega \alpha_i = \alpha_i \omega$, and as a result $\omega \delta_i = \delta_i \omega$; that is, α_i and δ_i are Ω -operators. It follows that $\alpha_i H$ and $\delta_i H$ are Ω -subgroups whenever H is an Ω -subgroup.

LEMMA 1. Let the commutative group $G = G_1 + G_2 + \cdots + G_n$ contain the Ω -subgroups H and K. If $H \supseteq K$, then $\alpha_i H \supseteq \alpha_i K$, $\delta_i H \supseteq \delta_i K$, and $\delta_i H \cap G_i \supseteq \delta_i K \cap G_i$.

Since $H \supseteq K$, the image $\alpha_i K$ of K under the homomorphism of H on $\alpha_i H$ must be contained in $\alpha_i H$. By the same argument $\delta_i H \supseteq \delta_i K$, and therefore $\delta_i H \cap G_i \supseteq \delta_i K \cap G_i$.

LEMMA 2. Let the commutative group $G = G_1 + G_2 + \cdots + G_n$ contain the Ω -subgroups H and K. If $H \supseteq K$ and if $\alpha_i H = \alpha_i K$, $\delta_i H \cap G_i = \delta_i K \cap G_i$, then H = K.

Presented to the Society, November 25, 1944; received by the editors February 10, 1945.

¹ Cf. Asano [1], Jacobson [2]. We use here the formulation of these postulates given by Jacobson. Numbers in brackets refer to the references at the end of the paper.