GENERALIZATIONS OF TWO THEOREMS OF JANISZEWSKI. II

R. H. BING

The purpose of this note is to strengthen Theorems 5 and 6 of [1] ${ }^{1}$ and to make corrections regarding assumptions of compactness in that paper. The following theorems hold in the plane.
Theorem 1. If neither of the domains D_{1}, D_{2} separates the point A from the point B, the boundary of D_{1} is compact and the common part of D_{2} and each component of D_{1} is connected or does not exist, then $D_{1}+D_{2}$ does not separate A from B.

Proof. Assume that $D_{1}+D_{2}$ separates A from B. Considering there to be a point P at infinity, we find that $D_{1}+D_{2}+P$ contains a simple closed curve J separating A from B. Let d_{2} be a component of D_{2} intersecting J. We find [1 , Theorem 4] that $J-J \cdot d_{2}$ contains a continuum M cutting A from B in the complement of d_{2} and such that any open arc of J containing M separates A from B in the complement of d_{2}. Let d_{1} be a component of D_{1} covering a point of M on the boundary of d_{2}. Now d_{1} covers M or else it would intersect two components of D_{2}. But by Theorem 5 of [1], $d_{1}+d_{2}$ does not separate A from B.

Instead of assuming that the boundary of D_{1} is compact, we could assume that the part of D_{1} in the complement of D_{2} is compact.

Theorem 2. If neither of the domains D_{1}, D_{2} cuts the point A from the point B, the boundary of D_{1} is compact and the common part of D_{2} and each component of D_{1} is connected or does not exist, then $D_{1}+D_{2}$ does not cut A from B.
Proof. Let $C_{i}(i=1,2)$ be the component of the complement of D_{i} containing $A+B$, let D_{i}^{\prime} be the complement of C_{i} and let $D_{2}^{\prime \prime}$ be the sum of all components of D_{2}^{\prime} that are not covered by D_{1}^{\prime}. Neither D_{1}^{\prime} nor $D_{2}^{\prime \prime}$ separates the plane. The boundary of D_{1}^{\prime} is a subset of the boundary of D_{1} and is therefore compact. If d^{\prime} is a component of D_{1}^{\prime}, we shall show that $d^{\prime} \cdot D_{2}^{\prime \prime}$ is connected or does not exist. It will follow from Theorem 1 that $D_{1}^{\prime}+D_{2}^{\prime \prime}$ does not separate the plane. Hence, its complement is a continuum containing $A+B$ and its subset $D_{1}+D_{2}$ does not cut A from B.

[^0]
[^0]: Presented to the Society, February 23, 1946; received by the editors January 7, 1946.
 ${ }^{1}$ Number in brackets refers to the reference cited at the end of the paper.

