A NOTE ON AXIOMATIC CHARACTERIZATION OF FIELDS

E. ARTIN AND G. WHAPLES

Since publication of our paper, Axiomatic characterization of fields by the product formula for valuations,¹ we have found that the fields of class field theory can be characterized by somewhat weaker axioms; we can drop the assumption, in Axiom 1, that $|\alpha|_{\mathfrak{p}}=1$ for all but a finite number of \mathfrak{p} , replacing it by the assumption that the product of all valuations converges absolutely to the limit 1 for all α .

Our original proof can be adapted to the new axiom with a few modifications, which we shall describe here. In §2, we keep Axiom 1 for reference and introduce:

AXIOM 1*. There is a set \mathfrak{M} of prime divisors \mathfrak{p} and a fixed set of valuations $| \mathfrak{p}, one for each \mathfrak{p} \in \mathfrak{M}$, such that, for every $\alpha \neq 0$ of k, the product $\prod_{\mathfrak{p}} |\alpha|_{\mathfrak{p}}$ converges absolutely to the limit 1. (That is, the series $\sum_{\mathfrak{p}} \log |\alpha|_{\mathfrak{p}}$ converges absolutely to 0.)

We must then omit the statement that there are only a finite number of archimedean primes, since this does not follow immediately from 1*; instead of it, we use the fact that $\sum_{\mathfrak{p}_{\infty}} \rho(\mathfrak{p}_{\infty})$ and $\sum_{\mathfrak{p}_{\infty}} \lambda(\mathfrak{p}_{\infty})$ converge absolutely. These quantities are defined on p. 480; the convergence follows from the fact that the product over all \mathfrak{p}_{∞} of $|1+1|_{\mathfrak{p}_{\infty}}$ must converge absolutely. Also, we must temporarily broaden the definition of "parallelotope" so as to permit a parallelotope to be defined by any valuation vector \mathfrak{a} for which $\prod_{\mathfrak{p}} |\mathfrak{a}|_{\mathfrak{p}}$ converges absolutely (rather than restricting \mathfrak{a} to be an idèle). In the statement of Axiom 2 we must replace "Axiom 1" by "Axiom 1*," Theorem 2, however, is left unchanged, together with Lemmas 4, 5, and 6, which are needed only to prove it; this theorem shows that the fields of class field theory really satisfy Axiom 1, so that at the end of the whole proof we shall find that Axiom 1 is a consequence of Axioms 1* and 2.

In §3, k is assumed to be any field for which Axioms 1* and 2 hold. Lemma 8 holds under assumption of Axiom 1*, for our slightly more general parallelotopes; in its proof we have only to note, in case of archimedean primes, that the product $\prod_{p_{\infty}} 4^{\rho(p_{\infty})}$ converges absolutely. In Lemma 9, property 2 must be replaced by:

2*. $|\alpha|_{\mathfrak{p}_{\infty}} \leq B_{\mathfrak{p}_{\infty}} |y|_{\mathfrak{p}_{\infty}}$, with a set of constants $B_{\mathfrak{p}_{\infty}}$ for which $\prod_{\mathfrak{p}_{\infty}} B_{\mathfrak{p}_{\infty}}$ converges absolutely.

Received by the editors December 9, 1945.

¹ Bull. Amer. Math. Soc. vol. 51 (1945) pp. 469-492.