[December

11. S. Straszewicz, Über die Zerschneidung der Ebene durch abgeschlossene Mengen, Fund. Math. vol. 7 (1925) pp. 159–187.

12. ——, Über eine Verallgemeinerung des Jordan'schen Kurvensatzes, Fund. Math. vol. 4 (1923) pp. 128–135.

The University of Texas

ON ISOMETRIES OF SQUARE SETS

PAUL J. KELLY

1. Introduction. It is not fully known under what conditions the isometry of two square, metric sets, say E^2 and F^2 , implies the isometry of E and F. Using the notion of order two self-isometries, this paper gives conditions sufficient to imply E isometric to F when E^2 and F^2 are finite and are metrized under any one of a fairly extensive class of functions. The basic ideas are first applied to non-square sets to yield a more general theorem which is then applied to the inverse square problem.

2. Definitions. A set is called metric if to every pair of its elements, a and b, there corresponds a real, non-negative number, which is independent of the order of a and b, zero if and only if a equals b, and which satisfies the triangle law.

Two metric sets are isometric (written " \equiv ") if there is a one-to-one transformation of one set on the other in which the metric number associated with any pair is the same as that associated with the transformed pair.

A non-identity mapping of a set on itself, which is an isometry, and which leaves each element of the set invariant or else interchanges it with another, is called a self-isometry of order two. Any subset on which the self-isometry is the identity is said to be left pointwise invariant.

THEOREM 1. Assume $A \equiv B$ under a mapping T, where A and B are finite metric sets. Let A and B have self-isometries of order two under mappings R and S respectively and let A_1 and B_1 denote respectively the maximum subsets left pointwise invariant. If A_1 has no self-isometry of order two, and has at least as many elements as B_1 , then $A_1 \equiv B_1$ and there

960

Presented to the Society, November 25, 1944, under the title Some properties of a certain interchange type of self-isometry; received by the editors September 23, 1944.