A NOTE ON THE ZEROS OF THE SECTIONS OF A
PARTIAL FRACTION

MORRIS MARDEN

1. Introduction. If f(z) is a rational function with a total of three
distinct zeros and poles, the zeros of its logarithmic derivative may be

located as points in the complex plane by aid of the following theo-
rem.

THEOREM 1. The zeros of the partial fraction
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where 21, 22 and %3 are three distinct, noncollinear points, lie at the foci
of the conic which touches the line segments (2s, 25), (23, 21) and (21, %)
in the points {1, &2 and ¢3 that divide these segments in the ratio ma:ms,
maimy, and myims respectively. If n=my+ms+ms5#0, this conic is an
ellipse or hyperbola according as nmymams>0 or <0. If n=0, the conic
s a parabola whose axis is parallel to the line joining the origin to the
point V= M1Z]_+71’L222 +11’L323.

In the special case m;=m,=m3=1, this theorem was proved geo-
metrically by Bécher and Grace.! In the general case it was first de-
duced by Linfield as a corollary to the following theorem which in
turn was established by the use of line coordinates and polar forms.?

THEOREM 2. The zeros of the partial fraction F(z) =) 2.,m;i/(z—2;)
lie at the foci of the curve C(21, 22, * * * , 2p} M1, Ma, * * + , My) Of class
p—1 which touches each of the p(p—1)/2 line-segments (2;, 2z) in a
point dividing it in the ratio m;:my.

In view, however, of the elementary character of Theorem 1, it
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