ON A CHARACTERISTIC PROPERTY OF LINEAR FUNCTIONS

E. F. BECKENBACH

1. Introduction. If the real function $y=g(x)$, defined and continuous in the closed and bounded interval $a \leqq x \leqq b$, or in the open interval $a<x<b$, is linear there,

$$
y=p x+q
$$

then for all x_{0}, h, with $h>0$, such that $x_{0}-h$ and $x_{0}+h$ lie in the interval of definition, we have

$$
\begin{equation*}
g\left(x_{0}\right)=\left[g\left(x_{0}-h\right)+g\left(x_{0}+h\right)\right] / 2 \tag{1}
\end{equation*}
$$

Conversely, if the real function $y=g(x)$, defined and continuous in $a \leqq x \leqq b$ or in $a<x<b$, satisfies (1) for all x_{0}, h, with $h>0$, such that $x_{0}-h$ and $x_{0}+h$ lie in the interval of definition, then [4, p. 189] ${ }^{1}$ $y=g(x)$ is a linear function of x.

If, however, in the converse it is given only that for each x_{0}, $a<x_{0}<b$, there exists a positive $h_{0}=h_{0}\left(x_{0}\right)$, such that $x_{0}-h_{0}$ and $x_{0}+h_{0}$ lie in the interval of definition, and for which we have

$$
\begin{equation*}
g\left(x_{0}\right)=\left[g\left(x_{0}-h_{0}\right)+g\left(x_{0}+h_{0}\right)\right] / 2 \tag{2}
\end{equation*}
$$

then the implications are different in the case that $g(x)$ is defined and continuous in the closed and bounded interval and in the case that $g(x)$ is defined and continuous only in the open interval; for in the former case it still follows [3, p. 253] that $g(x)$ must be linear, while in the latter case $g(x)$ is not necessarily linear [3, pp. 253-255].

A proof of the above result, that if $g(x)$ is defined and continuous in the closed and bounded interval and satisfies (2) then $g(x)$ necessarily is linear, can be given, as we shall show, which applies equally well to characterize, in terms of equalities analogous to (2), classes of functions [1] differing, and even topologically distinct [2], from the class of linear functions.
2. Theorem. We shall establish the following result.

Theorem. Let $\{f(x)\}$ be a class of functions defined and continuous in the closed and bounded interval $a \leqq x \leqq b$, and such that for all real $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ with $a \leqq x_{1}<x_{2} \leqq b$ there is a unique member

[^0]
[^0]: Presented to the Society, November 24, 1945; received by the editors April 24, 1945.
 ${ }^{1}$ Numbers in brackets refer to the references cited at the end of the paper.

