HERMITIAN QUADRATIC FORMS IN A QUASI-FIELD

GORDON PALL

1. Introduction. E. Witt ${ }^{1}$ proved the following theorem concerning quadratic forms in a fairly general field:

Theorem 1. Let $f_{1}=a x_{1}{ }^{2}+\phi_{1}\left(x_{2}, \cdots, x_{n}\right)$ and $f_{2}=a x_{1}{ }^{2}+\phi_{2}\left(x_{2}, \cdots\right.$, x_{n}) be quadratic forms whose coefficients lie in a given field F in which $2 \neq 0$. Then the equivalence in F of f_{1} and f_{2} implies that of ϕ_{1} and ϕ_{2}.

It is our purpose here to generalize this theorem to any quasi-field (a field, except that multiplication may not be commutative) on which is defined a conjugate operation of period 2 with the usual properties

$$
\overline{a+b}=\bar{a}+\bar{b}, \quad \overline{a b}=\bar{b} \cdot \bar{a}
$$

Well known examples are any field with $\bar{a}=a$; the field of complex numbers with the usual complex conjugate; the system of quaternions with real coefficients and the usual conjugate. The analogue in a quasi-field of quadratic form in a field is the hermitian quadratic form

$$
f=\bar{x}^{\prime} A x=\sum_{i, j=2}^{n} \bar{x}_{i} a_{i j} x_{j}, \quad \text { where } \quad \bar{A}^{\prime}=A, \quad \text { or } \quad \bar{a}_{i j}=a_{j i .}
$$

The scalars of a quasi-field are the elements s such that $\bar{s}=s$. The diagonal elements of a hermitian matrix are therefore scalars. The process of completing squares is carried out in much the same way as in a field. Thus if, in f above, $a_{11} \neq 0$,

$$
\begin{aligned}
f= & \left(\bar{x}_{1}+\sum_{i=1}^{n} \bar{x}_{i} a_{i 1} a_{11}^{-1}\right) a_{11}\left(x_{1}+\sum_{i=2}^{n} a_{11}^{-1} a_{1 i} x_{i}\right) \\
& +\sum_{j, k=2}^{n} \bar{x}_{j}\left(a_{j k}-a_{j 1} a_{11}^{-1} a_{1 k}\right) x_{k} .
\end{aligned}
$$

Hence the analogue of a form like f_{1} in Witt's theorem can be written

$$
\bar{x}_{1} a x_{1}+\phi, \quad \text { where } \quad \phi=\sum_{i, j=2}^{n} \bar{x}_{i} b_{i j} x_{j}, \quad \bar{b}_{i j}=b_{j i} .
$$

Since determinants do not exist in a quasi-field (except for hermitian matrices), we cannot demonstrate that a matrix T is nonsingular

[^0]
[^0]: Presented to the Society, September 17, 1945; received by the editors October 28, 1944.
 ${ }^{1}$ See bibliography.

