A NOTE ON SYSTEMS OF HOMOGENEOUS ALGEBRAIC EQUATIONS

RICHARD BRAUER

1. Introduction. Consider a system of algebraic equations

where f_i is a homogeneous polynomial of degree r_i with coefficients belonging to a given field K. We interpret x_1, x_2, \dots, x_n as homogeneous coordinates in an (n-1)-dimensional projective space. When n > h, the system (1) has non-trivial solutions (x_1, x_2, \dots, x_n) in an algebraically closed extension field of K, but there may not exist any such solutions in K itself. It is, in general, extremely difficult to decide whether adjunction of irrationalities of a certain type to K is sufficient to guarantee the existence of non-trivial solutions of (1) in the extended field. However, the situation is much simpler, when n is very large, in the sense that n lies above a certain expression depending on the number of equations h and the degrees r_1, r_2, \dots, r_h .

We shall show:

THEOREM A. For any system of h positive degrees r_1, r_2, \dots, r_h there exists an integer $\Phi(r_1, r_2, \dots, r_h)$ such that for $n \ge \Phi(r_1, r_2, \dots, r_h)$ the system (1) has a non-trivial solution in a soluble extension field K_1 of K. The field K_1 may be chosen such that its degree N_1 over K lies below a value depending on r_1, r_2, \dots, r_h alone and that any prime factor of N_1 is at most equal to $\max(r_1, r_2, \dots, r_h)$.

This Theorem A is evidently contained in the following theorem.

THEOREM B. For any system of positive integers r_1, r_2, \dots, r_h and any integer $m \ge 0$, there exists an integer $\Phi(r_1, r_2, \dots, r_h; m)$ with the following property: For $n \ge \Phi(r_1, \dots, r_h; m)$, there exists a soluble extension field K_2 of K such that all points (x_1, x_2, \dots, x_n) of an m-dimensional linear manifold L, defined in K_2 , satisfy the equations (1). Here K_2 may be chosen so that its degree N_2 over K lies below a bound depending on r_1, r_2, \dots, r_h and m and that no prime factor of N_2 exceeds $\max(r_1, r_2, \dots, r_h)$.

Presented to the Society, September 17, 1945; received by the editors July 17, 1945.