PERMUTATIONS WITHOUT 3-SEQUENCES

JOHN RIORDAN

1. Introduction. The enumeration of permutations of n distinct elements without rising 2 -sequences $12,23, \cdots, n-1 n$, is given by Whitworth [1], ${ }^{1}$ who gives also the enumeration when $n 1$ is added to this set of sequences. More recently, Kaplansky [2] and Wolfowitz [4] have enumerated permutations without rising or falling 2 -sequences, that is, without $21,32, \cdots, n n-1$ as well as $12, \cdots, n-1 n$. An addition to these results, the enumeration of permutations without 3 -sequences, $123, \cdots ; n-2 n-1 n$ is given here. This case, aside from its general interest as a natural extension of its predecessors, has a particular interest because it is a relatively simple example of failure of what Kaplansky has called quasi-symmetry. In the method of inclusion and exclusion, or its symbolic equivalent, a case is said to be quasi-symmetric when the number of permutations having k of the given properties is either zero or a function of k alone.
2. The enumeration setting. Employing the symbolic method, with $q_{i j k}$ the probability that elements i, j and k are consecutive, the probability of finding a permutation without any of the 3 -sequences in question is

$$
\begin{equation*}
P_{0}=\left(1-q_{123}\right)\left(1-q_{234}\right) \cdots\left(1-q_{n-2} n-1 n\right) \tag{1}
\end{equation*}
$$

The meaning of this is that on expansion a product of q 's represents the probability of permutations having a particular set of 3 -sequences denoted by subscripts of these q 's.

It is evident that the sequences chosen do not conflict; that is, it is possible to have any k of the $n-2$ simultaneously.

For a single q the number of permutations is $(n-3+1)$!, for 3 elements are required for the corresponding 3 -sequence which may be permuted as a single entity; the corresponding probability is $(n-2)!/ n!$.

For a product of two q 's however, the case is otherwise. If the two are immediately adjacent, like 123,234 , the number of permutations is $(n-4+1)$! or $(n-3)$!; if not, like 123,345 or 123,456 , the number is either $(n-5+1)$! or $(n-6+2)$!, in either case $(n-4)$!. If sequences are denoted by their initial numbers, the number of permutations is

[^0]
[^0]: Received by the editors May 25, 1945.
 ${ }^{1}$ Numbers in brackets refer to the Bibliography at the end of the paper.

