THE COEFFICIENTS OF UNIVALENT FUNCTIONS

M. S. ROBERTSON

1. Introduction. Let the function

$$
\begin{equation*}
f(z)=c_{0}+c_{1} z+c_{2} z^{2}+\cdots+c_{n} z^{n}+\cdots, \quad c_{n} \text { real, } \tag{1.1}
\end{equation*}
$$

be regular and convex in the direction of the imaginary axis for $|z|<1$. Thus each circle $|z|=r, 0<r<1$, is mapped by $f(z)$ into a contour C_{r} which has the property that straight lines parallel to the imaginary axis cut C_{r} in at most two points. Since the coefficients are all real, C_{r} is symmetric about the real axis. For

$$
f\left(r e^{i \theta}\right)=U(r, \theta)+i V(r, \theta)
$$

we have $\partial U(r, \theta) / \partial \theta \leqq 0$ for $0<\theta<\pi$. In other words, $z f^{\prime}(z)$ is typically real for $|z|<1$. It is well known $[1,2]^{1}$ that the coefficients c_{n} are bounded, $\left|c_{n}\right| \leqq\left|c_{1}\right|, n=1,2, \cdots$, and [3] have the representation

$$
\begin{equation*}
c_{n}=\frac{c_{1}}{n \pi} \int_{0}^{\pi} \frac{\sin n \theta}{\sin \theta} d \alpha(\theta) \tag{1.2}
\end{equation*}
$$

where $\alpha(\theta)$ is a nondecreasing function of θ in $(0, \pi)$ normalized so that

$$
\frac{1}{\pi} \int_{0}^{\pi} d \alpha(\theta)=1
$$

A sufficient condition that $f(z)$, given by the series (1.1), be regular and convex in the direction of the imaginary axis for $|z|<1$ is that the sequence $\left\{c_{n}\right\}$ be monotonic of order 4 , a theorem due to L. Fejér [4]. A sequence $\left\{c_{n}\right\}$ is said to be monotonic of order p if each of the differences

$$
\begin{equation*}
\Delta^{(k)} c_{n}=c_{n}-C_{k, 1} c_{n+1}+C_{k, 2} c_{n+2}-\cdots+(-1)^{k} C_{k, k} c_{n+k} \tag{1.3}
\end{equation*}
$$

are non-negative for $k=0,1,2, \cdots, p ; n=0,1,2, \cdots$ This sufficiency test implies, among other inequalities, that $0 \leqq c_{n}-c_{n+1}$. This suggests the problem of finding an upper bound for $c_{n}-c_{n+1}$ for functions $f(z)$ given by (1.1) which are convex in the direction of the imaginary axis for $|z|<1$. The example $c_{1} z(1+z)^{-1}$ shows that the upper bound $2\left|c_{1}\right|$ is sharp. However, if we consider the differences $c_{n-1}-c_{n+1}$ we obtain an inequality which is not so immediately obvious. This inequality is stated in the following theorem.

[^0]
[^0]: Presented to the Society, September 17, 1945; received by the editors May 21, 1945.
 ${ }^{1}$ Numbers in brackets refer to the references cited at the end of the paper.

