SOME REMARKS ON THE MEASURABILITY OF CERTAIN SETS

PAUL ERDÖS

The present note contains some elementary remarks on sets defined by simple geometric properties. Our main tool will be the Lebesgue density theorem.

First we introduce a few notations: d(a, b) denotes the distance from a to b and S(x, r) the open sphere of center x and radius r. A point x of a set A is said to be of metric density 1 if to every ϵ there exists a δ such that $A \cap S(x, r), r < \delta$, has measure greater than $(1 - \epsilon)$ times the volume of S(x, r). \overline{A} denotes the closure of A.

(1) Let E be any closed set in *n*-dimensional euclidean space. Denote by E_r the set of points whose distance from E is r (r>0). We shall prove that E_r has measure 0.

The set E_r is clearly closed and therefore measurable. If it had positive measure it would contain a point of metric density 1. Let x be any point of E_r and $y \in E$ be one of the points in E at distance rfrom x. Then S(y, r) cannot contain any point of E_r . Thus x cannot be a point of metric density 1, which completes the proof. This proof is due to T. Radó.

(2) Let A be any set of measure 0 on the positive real axis. Denote by E_A the set of points whose distance from E is in A. We shall show that E_A has measure 0. As is well known A is contained in a G_{δ} , say G of measure 0. Thus it suffices to show that E_g has measure 0. E_g is clearly a G_{δ} and thus measurable, so that again it will suffice to show that E_q has no point of metric density 1. Let x be any point of E_q and y any one of the points of E closest to it. Denote by $C_x(\eta_1, \eta_2)$ the half cone defined as follows: $z \in C_x(\eta_1, \eta_2)$ if $d(z, x) < \eta_1$ and the angle zxy is less than η_2 . Let R be any ray in C_x from x. Denote by z a variable point of R. We assert that if η_1 and η_2 are sufficiently small, d(z, E) is a decreasing function of d(z, x) for which the upper limit of the difference quotient with respect to d(z, x) is less than $-\delta$, with some $\delta > 0$. Let $y_1 \in E$ be one of the points closest to z in E. We assert that $d(y, y_1)$ is small if η_2 is small. Clearly by definition y_1 is contained in $\{S(z, d(z, y))\}$ but not in S(x, d(x, y)). Since $d(x, z) < \eta_1$ the difference of these two spheres has small diameter if η_2 is small, which shows that $d(y, y_1)$ is small. Now it is geometrically clear that for sufficiently small η_1 , η_2 there exists a $\delta > 0$ such that the upper limit of the difference quotient of $d(z, y_1)$ with respect to d(z, x) is less

Received by the editors May 16, 1945, and, in revised form, June 13, 1945.