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The present note contains some elementary remarks on sets defined 
by simple geometric properties. Our main tool will be the Lebesgue 
density theorem. 

First we introduce a few notations : d(a, b) denotes the distance 
from a to b and Six, r) the open sphere of center x and radius r. A 
point x of a set A is said to be of metric density 1 if to every e there 
exists a ô such that AC\S{x, r) , r < 5, has measure greater than (1 — e) 
times the volume of S(x, r). 'A denotes the closure of A. 

(1) Let E be any closed set in w-dimensional euclidean space. De­
note by Er the set of points whose distance from E is r ( r>0 ) . We 
shall prove that Er has measure 0. 

The set Er is clearly closed and therefore measurable. If it had posi­
tive measure it would contain a point of metric density 1. Let x be 
any point of Er and yÇzE be one of the points in E a t distance r 
from x. Then S(y, r) cannot contain any point of Er. Thus x cannot 
be a point of metric density 1, which completes the proof. This proof 
is due to T. Radó. 

(2) Let A be any set of measure 0 on the positive real axis. Denote 
by E A the set of points whose distance from E is in A. We shall show 
that EA has measure 0. As is well known A is contained in a G$, say 
G of measure 0. Thus it suffices to show that E0 has measure 0. Eg is 
clearly a Gs and thus measurable, so that again it will suffice to show 
that Eg has no point of metric density 1. Let x be any point of Eg 

and y any one of the points of E closest to it. Denote by Cx(yi, 772) 
the half cone defined as follows: z G C ^ i , 772) if d(z, x)<rji and the 
angle zxy is less than rç2. Let R be any ray in Cx from x. Denote by z a 
variable point of R. We assert that if rji and r)2 are sufficiently small, 
d(z, E) is a decreasing function of d(z, x) for which the upper limit 
of the difference quotient with respect to d(z, x) is less than — S, with 
some S>0 . Let ;yi<E£ be one of the points closest to z in E. We assert 
that d(y, yi) is small if 772 is small. Clearly by definition y\ is contained 
in {S{z, d(z} y))} but not in S(x, d(x, y)). Since d(x, z) <rjt the differ­
ence of these two spheres has small diameter if r]2 is small, which 
shows that d{y, yi) is small. Now it is geometrically clear that for 
sufficiently small 771, 772 there exists a S > 0 such that the upper limit 
of the difference quotient of d(z, yi) with respect to d(z, x) is less 
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