SOME REMARKS ON THE MEASURABILITY OF CERTAIN SETS

PAUL ERDÖS
The present note contains some elementary remarks on sets defined by simple geometric properties. Our main tool will be the Lebesgue density theorem.

First we introduce a few notations: $d(a, b)$ denotes the distance from a to b and $S(x, r)$ the open sphere of center x and radius r. A point x of a set A is said to be of metric density 1 if to every ϵ there exists a δ such that $A \cap S(x, r), r<\delta$, has measure greater than (1- ϵ) times the volume of $S(x, r) . \bar{A}$ denotes the closure of A.
(1) Let E be any closed set in n-dimensional euclidean space. Denote by E_{r} the set of points whose distance from E is $r(r>0)$. We shall prove that E_{r} has measure 0 .

The set E_{r} is clearly closed and therefore measurable. If it had positive measure it would contain a point of metric density 1 . Let x be any point of E_{r} and $y \in E$ be one of the points in E at distance r from x. Then $S(y, r)$ cannot contain any point of E_{r}. Thus x cannot be a point of metric density 1 , which completes the proof. This proof is due to T. Rado.
(2) Let A be any set of measure 0 on the positive real axis. Denote by E_{A} the set of points whose distance from E is in A. We shall show that E_{A} has measure 0 . As is well known A is contained in a G_{δ}, say G of measure 0 . Thus it suffices to show that E_{g} has measure 0 . E_{g} is clearly a G_{δ} and thus measurable, so that again it will suffice to show that E_{g} has no point of metric density 1 . Let x be any point of E_{g} and y any one of the points of E closest to it. Denote by $C_{x}\left(\eta_{1}, \eta_{2}\right)$ the half cone defined as follows: $z \in C_{x}\left(\eta_{1}, \eta_{2}\right)$ if $d(z, x)<\eta_{1}$ and the angle $z x y$ is less than η_{2}. Let R be any ray in C_{x} from x. Denote by z a variable point of R. We assert that if η_{1} and η_{2} are sufficiently small, $d(z, E)$ is a decreasing function of $d(z, x)$ for which the upper limit of the difference quotient with respect to $d(z, x)$ is less than $-\delta$, with some $\delta>0$. Let $y_{1} \in E$ be one of the points closest to z in E. We assert that $d\left(y, y_{1}\right)$ is small if η_{2} is small. Clearly by definition y_{1} is contained in $\{S(z, d(z, y))\}$ but not in $S(x, d(x, y))$. Since $d(x, z)<\eta_{1}$ the difference of these two spheres has small diameter if η_{2} is small, which shows that $d\left(y, y_{1}\right)$ is small. Now it is geometrically clear that for sufficiently small η_{1}, η_{2} there exists a $\delta>0$ such that the upper limit of the difference quotient of $d\left(z, y_{1}\right)$ with respect to $d(z, x)$ is less

[^0]
[^0]: Received by the editors May 16, 1945, and, in revised form, June 13, 1945.

