J. MARCINKIEWICZ AND A. ZYGMUND

1. On the differentiability of functions and summability of trigonometrical series, Fund. Math. vol. 26 (1936) pp. 1-43.

S. Saks

1. Theory of the integral, Monografie Matematyczne, vol. 7, Warsaw and New York (Stechert), 1937.

Illinois Institute of Technology and Brown University

INTEGRAL DISTANCES

NORMAN H. ANNING AND PAUL ERDÖS

In the present note we are going to prove the following result:

For any n we can find n points in the plane not all on a line such that their distances are all integral, but it is impossible to find infinitely many points with integral distances (not all on a line).¹

PROOF. Consider the circle of diameter 1, $x^2+y^2=1/4$. Let p_1, p_2, \cdots be the sequence of primes of the form 4k+1. It is well known that

$$p_i^2 = a_i^2 + b_i^2, \quad a_i \neq 0, \quad b_i \neq 0,$$

is solvable. Consider the point (on the circle $x^2+y^2=1/4$) whose distance from (-1/2, 0) is b_i/p_i . Denote this point by (x_i, y_i) . Consider the sequence of points (-1/2, 0), (1/2, 0), (x_i, y_i) , $i=1, 2, \cdots$. We shall show that any two distances are rational. Suppose this has been shown for all i < j. We then prove that the distance from (x_i, y_i) to (x_i, y_i) is rational. Consider the 4 concyclic points (-1/2, 0), (1/2, 0), (x_i, y_i) , (x_j, y_j) ; 5 distances are clearly rational, and then by Ptolemy's theorem the distance from (x_i, y_i) to (x_j, y_j) is also rational. This completes the proof. Thus of course by enlarging the radius of the circle we can obtain n points with integral distances.

It is very likely that these points are dense in the circle $x^2+y^2=1/4$, but this we can not prove. It is easy to obtain a set which is dense on $x^2+y^2=1/4$ such that all the distances are rational. Consider the

598

Received by the editors February 20, 1945.

¹ Anning gave 24 points on a circle with integral distances. Amer. Math. Monthly vol. 22 (1915) p. 321. Recently several authors considered this question in the Mathematical Gazette.