SOME REMARKS ON EULER'S ϕ FUNCTION AND SOME RELATED PROBLEMS

PAUL ERDÖS

The function $\phi(n)$ is defined to be the number of integers relatively prime to n, and $\phi(n) = n \cdot \prod_{p|n} (1-p^{-1})$.

In a previous paper¹ I proved the following results:

(1) The number of integers $m \leq n$ for which $\phi(x) = m$ has a solution is $o(n \lfloor \log n \rfloor^{\epsilon-1})$ for every $\epsilon > 0$.

(2) There exist infinitely many integers $m \leq n$ such that the equation $\phi(x) = m$ has more than m° solutions for some c > 0.

In the present note we are going to prove that the number of integers $m \leq n$ for which $\phi(x) = m$ has a solution is greater than $cn(\log n)^{-1}\log\log n$.

By the same method we could prove that the number of integers $m \leq n$ for which $\phi(x) = m$ has a solution is greater than $n(\log n)^{-1}(\log \log n)^k$ for every k. The proof of the sharper result follows the same lines, but is much more complicated. If we denote by f(n) the number of integers $m \leq n$ for which $\phi(x) = m$ has a solution we have the inequalities

$$n(\log n)^{-1}(\log \log n)^k < f(n) < n(\log n)^{\epsilon-1}$$

By more complicated arguments the upper and lower limits could be improved, but to determine the exact order of f(n) seems difficult.

Also Turán and I proved some time ago that the number of integers $m \leq n$ for which $\phi(m) \leq n$ is cn + o(n). We shall give this proof, and also discuss some related questions:

LEMMA 1. Let $a < \epsilon$, b < n, $a \neq b$, $\epsilon = (\log \log n)^{-100}$. Then the number of solutions $N_n(a, b)$ of

(1)
$$(p-1)a = (q-1)b, \quad p \leq na^{-1}, \quad q \leq nb^{-1},$$

p, q primes, does not exceed

(2)
$$\frac{(a, b)}{ab} \frac{n}{(\log n)^2} (\log \log n)^{s_0}$$
.

PROOF. Put (a, b) = d. Then we have $p \equiv 1 \mod bd^{-1}$. Also $(p-1)ab^{-1} + 1 = q$ is a prime. We can assume that both p and q in (1) are greater

Received by the editors February 9, 1945.

¹ On the normal number of prime factors of p-1, Quart. J. Math. Oxford Ser. vol. 6 (1935) pp. 205-213.