SOME REMARKS ON EULER'S ϕ FUNCTION AND SOME RELATED PROBLEMS

PAUL ERDÖS

The function $\phi(n)$ is defined to be the number of integers relatively prime to n, and $\phi(n)=n \cdot \prod_{p \mid n}\left(1-p^{-1}\right)$.

In a previous paper ${ }^{1}$ I proved the following results:
(1) The number of integers $m \leqq n$ for which $\phi(x)=m$ has a solution is $o\left(n[\log n]^{-1}\right)$ for every $\epsilon>0$.
(2) There exist infinitely many integers $m \leqq n$ such that the equation $\phi(x)=m$ has more than m^{e} solutions for some $c>0$.

In the present note we are going to prove that the number of integers $m \leqq n$ for which $\phi(x)=m$ has a solution is greater than $c n(\log n)^{-1} \log \log n$.

By the same method we could prove that the number of integers $m \leqq n$ for which $\phi(x)=m$ has a solution is greater than $n(\log n)^{-1}(\log \log n)^{k}$ for every k. The proof of the sharper result follows the same lines, but is much more complicated. If we denote by $f(n)$ the number of integers $m \leqq n$ for which $\phi(x)=m$ has a solution we have the inequalities

$$
n(\log n)^{-1}(\log \log n)^{k}<f(n)<n(\log n)^{\epsilon^{-1}}
$$

By more complicated arguments the upper and lower limits could be improved, but to determine the exact order of $f(n)$ seems difficult.

Also Turán and I proved some time ago that the number of integers $m \leqq n$ for which $\phi(m) \leqq n$ is $c n+o(n)$. We shall give this proof, and also discuss some related questions:

Lemma 1. Let $a<\epsilon, b<n, a \neq b, \epsilon=(\log \log n)^{-100}$. Then the number of solutions $N_{n}(a, b)$ of

$$
\begin{equation*}
(p-1) a=(q-1) b, \quad p \leqq n a^{-1}, \quad q \leqq n b^{-1} \tag{1}
\end{equation*}
$$

p, q primes, does not exceed

$$
\begin{equation*}
\frac{(a, b)}{a b} \frac{n}{(\log n)^{2}}(\log \log n)^{80} . \tag{2}
\end{equation*}
$$

Proof. Put $(a, b)=d$. Then we have $p \equiv 1 \bmod b d^{-1}$. Also $(p-1) a b^{-1}$ $+1=q$ is a prime. We can assume that both p and q in (1) are greater

[^0]
[^0]: Received by the editors February 9, 1945.
 ${ }^{1}$ On the normal number of prime factors of $p-1$, Quart. J. Math. Oxford Ser. vol. 6 (1935) pp. 205-213.

