THE BASIS THEOREM FOR VECTOR SPACES OVER RINGS

C. J. EVERETT

It is the purpose of this note to establish the following theorem :
Theorem. A vector space $M=u_{1} K+\cdots+u_{m} K$ of m basis elements over a ring $K=\{0, a, b, \cdots, 1\}$ with unit 1 has the property that every subspace $N>0$ possesses a basis of $n \leqq m$ elements if and only if K is a right principal-ideal-ring without zero-divisors.

That such a ring insures the basis condition for subspaces is well known [3, p. 121]. ${ }^{1}$

Suppose now that every subspace $N>0$ has a basis of $n \leqq m$ elements. It has been shown [2, Theorem (F)] that every right ideal $R>0$ of K must then have a single generator: $R=r_{0} K$, where $r_{0} k=0$ implies $k=0$. Moreover, since every right ideal has a finite set of generators, the ascending chain condition must hold for right ideals of K [3, p. 26]. It therefore suffices to prove the following two lemmas.

Lemma 1. In a ring K with unit 1 and ascending chain condition for right ideals, equations $a b=1, a c=0$ imply $c=0$.

If $c \neq 0$, the linear transformation $k \rightarrow a k, k \in K$, would be of type (iv) [2, p. 313], that is, $K / K_{0} \cong K$, and $0<K_{0}<K_{1}<K_{2}<\cdots$, where K_{i} is defined inductively as the set of all elements of K mapped into elements of K_{i-1}. This contradicts the chain condition.

Lemma 2. A ring K with unit in which every right ideal $R>0$ is of the form $r_{0} K$, where $r_{0} k=0$ implies $k=0$, has no zero divisors.

Let $s c=0, s \neq 0$, and $s K=r_{0} K \neq 0$, where $r_{0} k=0$ implies $k=0$. We have $s=r_{0} a, r_{0}=s b=r_{0} \cdot a b, r_{0}(a b-1)=0$, and hence $a b=1$. Also, $s c=0=r_{0} a c$, and $a c=0$. Since Lemma 1 applies to $K, c=0$.

It should be noted that the result follows also from a result of Baer's [1, Theorem 5 or Lemma 4] which states that in a ring with unit and weak maximal condition, $a b=1$ implies $b a=1$.

Bibliography

1. R. Baer, Inverses and zero-divisors, Bull. Amer. Math. Soc. vol. 48 (1942) pp. 630-638.
[^0]
[^0]: Presented to the Society, November 25, 1944; received by the editors February 14, 1945.
 ${ }^{1}$ Numbers in brackets refer to the bibliography.

