THE EXISTENCE OF ANORMAL CHAINS

DAVID BLACKWELL

1. Introduction. Let \overline{B} be a Borel field of subsets of a space X, and let P(x, E) be for fixed x a probability measure on \overline{B} and for fixed E a \overline{B} -measurable function of x. P(x, E) may be considered as representing the transition probability of going from x into E in a single trial. Denote by Ω the space of sequences $\omega: (x_0, x_1, \cdots)$ where $x_i \in X$ and by \overline{E} the Borel field of subsets of Ω determined by all sets

$$\{x_i \in E\}, \text{ where } E \in \overline{B}, \qquad i = 1, 2, \cdots.$$

Doob [2, pp. 102–103] has shown that there exists for each $x \in X$ a probability measure $P_x(S)$ defined on \overline{E} such that for every P_x -integrable function $f(x_1, \dots, x_n)$

(1)
$$\int f(\omega)dP_x = \int \int \cdots \int f(x_1, \cdots, x_n)dP(x_{n-1}, x_n) \cdots dP(x, x_1),$$

that Ω with the measure P_x is a Markoff process, that is, $E(x_1, \dots, x_n; g) = E(x_n; g)$ where $g = g(x_{n+1}, x_{n+2}, \dots)$ and the E's denote conditional expectations with respect to the indicated variables, and that $E(x_1, \dots, x_r; f)$ is the function obtained by carrying out the first n-r integrations in (1).

Write $Q(x, E) = P_x(\limsup \{x_i \in E\})$, so that Q(x, E) represents the probability of entering E infinitely often, starting from x. Following Doblin [1, p. 68 et seq.] we make the following definitions for sets of \overline{B} : E is inessential if Q(x, E) = 0 for all x, and essential otherwise. An essential set is improperly essential if it is a denumerable sum of inessential sets, and absolutely essential otherwise. A finite or denumerable sum of improperly essential sets is consequently improperly essential. E is closed if P(x, E) = 1 for all $x \in E$, and a closed set is indecomposable if it does not contain two disjunct non-empty closed subsets. An absolutely essential indecomposable set is said to be normal if it contains a closed set which contains no improperly essential subsets and anormal otherwise. If X is a normal set, we shall say that the Markoff chain determined by P(x, E) is a normal chain.

Doblin [1] has obtained for normal chains many elegant results which are considerably more complicated for the anormal case. For example [1, p. 81] in the normal case there exists a closed set G such

Received by the editors September 16, 1944.

¹ Numbers in brackets refer to the references cited at the end of the paper.